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Abstract 
 

The Global Positioning System (GPS), which was declared operational in 

December 1993, has provided continuous worldwide navigational capabilities in all types 

of weather.  GPS has a minimum of 24 satellites in its constellation with additional fully 

functional spare satellites, which vary about 30 in total number.  This navigational 

service has provided three-dimensional position within 30 meters and time within 100 ns 

to the civil community, which typically uses the coarse acquisition (C/A) code.  The 

military GPS user has improved position accuracy within 6 meters using the dual GPS 

frequencies that carry the precise (P) code.  The coarse resolution of a code measurement 

is about 1/10 of the smallest bit length of either code, which is about 29 m on C/A or 2.9 

m with P code.  Also, the GPS phase measurements can be determined well within 1/100 

of a cycle by both civil and military receivers, so that the equivalent wavelength portion 

will be less than 0.19 cm and 0.24 cm.  Recent GPS technology has improved civil 

navigation close to the military precision limits. 

To improve the precision by at least a hundred-fold, this dissertation considers a 

new exact linear navigation algorithm compared to the standard iterative GPS solution 

and also considers a new method of measurement by combining both carrier and phase 

measurements to improve pseudoranges within a centimeter tolerance.  The GPS signal 

design is described in detail, and the novel techniques are derived explicitly.  A 

simulation illustrating the novel exact solution demonstrates the greater versatility over 

the standard GPS iterative method, which, in some special cases, converges prematurely.  

Also, the GPS navigation solution is computed using both methods with actual GPS data 

against surveyed benchmarks.  In conclusion, this dissertation: (1) derives a new exact 

linear GPS navigation algorithm as an alternative to the standard iterative GPS method, 

(2) demonstrates the standard iterative GPS navigation solution may stall prematurely in 

many small regions, which are dependent on the satellite configuration, before getting to 

the receiver’s actual location, and (3) illustrates a new method that combines carrier 

phases with pseudorange data to obtain subcentimeter precision in the GPS pseudoranges 

plus improved navigation with the exact GPS algorithm.  
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Chapter 1 Introduction 
The Global Positioning System (GPS) represents a nearly ideal dual-use 

technology between the civil and military communities.  The original design began in 

1973 when the Department of Defense decreed that GPS would be a Joint Program with a 

GPS Joint Program Office (GPS JPO) located at the Air Force’s Space and Missile 

Organization in El Segundo, CA.  The current GPS system was declared with Initial 

Operational Capability (IOC) on December 8, 1993, and it is virtually identical today as 

the system was proposed (Parkinson, 1996) in 1973.  The satellites have expanded their 

functionality to support added military capabilities, and the orbits have changed from 63 

degree inclinations to 55 degree inclinations for Shuttle deployment, but the GPS 

receivers of today would still work with the original GPS satellites.  It is a major 

achievement that this system has kept the same design and general accuracy over three 

decades.  All GPS signals are systematically affected by the physics of the environment 

due to the ionosphere, troposphere or relativity, which can be removed either by 

modeling or direct measurement.  Still, the navigation solution is limited by inaccurate 

range determinations between each GPS satellite and the GPS receiver due to the noise in 

the code.  The GPS carrier signals are 1575.42 MHz and 1227.6 MHz with a respective 

wavelength of 19.0 cm and 24.4 cm, respectively.   

It is the purpose of this thesis to propose and demonstrate a new improvement in 

GPS navigation precision by combining dual phase measurements with pseudoranges as 

measured by a single GPS receiver in real time operation.  This thesis contains a new 

derivation of an exact GPS Navigation solution as an alternative of the standard GPS 

iterative method, which can converge prematurely in some special cases.  The new 

methods may well offer other enhancements in GPS navigation. 

1.1 Principles of Global Positioning System Operation 
The principal GPS navigation technique uses satellite to ground ranging 

information where the GPS satellites broadcast their estimated positions.  The positions 

are obtained mathematically by trilateration from a minimum of four GPS satellites.  

Ranges are measured simultaneously from the satellites by each GPS receiver through 
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correlations of the incoming signal with a replicated signal, which obtains the time delay 

between transmission and reception using the receiver’s internal clock.  When multiplied 

by the speed of light, this time delay obtains the individual distances, which are called 

pseudoranges.  These ranges have the systematic large offset due to the time difference of 

the receiver’s internal clock and the GPS atomic timescale.  With four GPS satellites, the 

three-dimensional position and the GPS time are determined through iterative 

computations.  With additional satellites, the navigation solution is overdetermined, so 

least squares techniques are usually employed to obtain the best estimate for position.  

Various Kalman filter models obtain navigation solutions by smoothing through noisy 

measurements. 

The military maintains a worldwide network of monitoring stations at Colorado 

Springs, Ascension Island, Diego Garcia, Kwajalein and Hawaii to collect GPS ranging 

data for all operational satellites.  The Master Control Station uses the same signals 

collected by the GPS receiver and calculates the satellite ephemeredes and computes the 

future position of each GPS satellite and clock correction.  The MCS calculates these 

prediction messages for at least 6 months and uploads these broadcast messages into each 

satellite on a daily basis.  Each prediction message, which is valid for a few hours about 

the message epoch, does degrade with time, but the average root-mean-square (rms) 

satellite position error is about 2-3 meters after one day and approximately 24 meters 

after three days past an epoch. 

1.2 GPS Ranging Signal 
The GPS ranging signals are broadcast at 1575.42 MHz as L1 and at 1227.6 MHz 

as L2.  The signals are broadcast synchronously, so that the receiver can directly calibrate 

the ionosphere group delay and apply the corrections to the measurements.  More 

explanations concerning the deviations to the signals are given later in this thesis.  Most 

civil GPS receivers use only the L1 signal, while the military GPS receivers are designed 

to use both L1 and L2. 

The GPS signals can carry two modulations at the same time by phase quadrature.  

Right now, only L1 carries two modulations, while L2 carries one.  The two modulations 

are: 
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 (1) C/A or Coarse Acquisition Code.  This is a short pseudorandom noise (PRN) 

code broadcast at a bit (or chipping) rate of 1.023 MHz on L1.  This is the primary 

ranging signal, and it is always broadcast unencrypted.  This code is repeated each 

millisecond, and each satellite broadcasts its own unique code allowing the receiver to 

track with a code tracking loop.   

 (2) P or Precise Code.  This is a faster PRN code with a chipping rate of 10.23 

MHz.  Because P code has a higher modulation bandwidth, the code ranging signal is 

almost 10 times more precise.  This reduces the noise in the received signal somewhat, 

but the signal offsets induced in the transmissions must still be eliminated.  When the 

military encrypts P code, the new code is called Y Code, which is untrackable with the 

civil GPS receiver.  This ensures the P code can not be spoofed by an adversary, and this 

feature is called antispoofing (AS).  GPS receivers that can decrypt Y code are often 

designated as P(Y) code receivers. 

 In addition, the military’s GPS design allows the degradation in the accuracy of 

the transmissions by perturbing the satellite clock or by incorporating errors in the 

broadcast satellite ephemeris.  This degradation is called Selective Availability (S/A), and 

the formula for S/A is classified.  However, toward the end of the Clinton 

Administration, S/A was set to zero for all GPS satellites, which is the continued situation 

we have now.  This effectively is the situation prior to March 1990 when SA was first 

implemented for all GPS satellites. 

 There are two types of observations collected by most GPS receivers.  One is the 

pseudorange, which equals the distance between the satellite and the receiver plus the 

equivalent distance offset due to the uncalibrated GPS clock internal in the receiver 

compared to the ultraprecise GPS timescale.  Smaller corrective terms do create other 

offsets in the pseudorange, such as the ionosphere, the troposphere, multipath, Earth 

rotation, relativity, interchannel receiver biases, etc.  The second observation type is the 

carrier phase, which is the difference between the received phase and the phase of the 

receiver oscillator at the epoch of measurement.  Most GPS receivers make phase 

measurements at equally spaced intervals and keep track of the number of complete 
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cycles received since the beginning of the measurement.  The accumulated phases 

observed since an arbitrary epoch is the typical output of this observation type. 

The final component of the GPS signal is the 50 bit/second modulation to transmit 

information from the GPS satellite to the receiver.  Each satellite transmits its location 

and the real-time offset to change the uncorrected GPS satellite clock value to the GPS 

timescale maintained at the MCS.  Additional information is interleaved between the 

basic information, such as satellite health, locations of other GPS satellites, and the 

necessary information to lock onto P(Y) code after acquiring C/A code.  Because of the 

slow transmission rate, it takes 12.5 minutes to get the complete information transmitted 

by any one GPS satellite. 

Recent innovations in GPS receiver design in the civil community have allowed 

several techniques for effectively circumventing the effects of S/A so that C/A can 

approach the accuracy of P(Y) code receivers.  However, most of these innovations suffer 

from a signal-to-noise (S/N) loss compared to direct P(Y) code tracking.  Using these 

techniques, the civil GPS receivers generally operate in a low dynamic or nonjammed 

environment.   

1.3 GPS Space Segment–Satellites 
The original GPS satellites were called Block I and were deployed in 12 hour 

orbits inclined at 63 degrees in three planes that were spaced equally around the equator.  

The 63 degree inclinations took advantage of the natural stable equilibrium that 

maintained the argument of perigee in the orbits.  The upgraded GPS satellites were the 

Block II and Block IIA models of the same external design, which were launched in 55 

degree inclinations that the space shuttles could only deploy satellites due to fuel 

constraints.  The number of orbital planes was increased to six, and the 24 operational 

satellites with fully functional spares now number around 30 (GPS JPO, 1998).  The 

current GPS replacement satellites are Block IIR, and the future Block IIF will be 

deployed by 2008 (GPS JPO, 2006).  The satellites use four electronically monitored 

momentum wheels for stabilization in three dimensions.  The solar panels provide the 

basic power for the entire satellite operations.  The ranging signal is radiated by a 

multiple element antenna that shapes the beam to broadcast the power in a 14 degree 
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cone toward the Earth with enhanced power concentrated toward the limb of the Earth.  

Wherever a GPS receiver may pick up radiation from a GPS satellite, this beam design 

allows nearly constant power at all local elevations on the Earth.   

 
Figure 1:  Block II or IIA Satellite  

 
Figure 2:  Block IIR or IIM Satellite 

 

Figure 3:  Block IIF Satellite 

All GPS satellites carry multiple atomic clocks for redundancy since the cesium 

or hydrogen masers in the clocks eventually lose the gas of excited atoms required to 

generate the necessary frequency.  The requirement for such a stable clock can be 

roughly determined as follows.  The speed of light travels 1 foot in about 1 nanosecond.  

If the goal is to maintain GPS with an error of 5 feet in one day, then the precise clock 

must be stable to 5 x 10-9 s / 86400 s = 5.9 x 10-14 s/s, which only atomic clocks can 

provide.  The atomic clocks with the frequency synthesizers synchronize the GPS signal 

generators and control the radio frequency centering of the two L band frequencies 

(1575.42 MHz and 1227.6 MHz).  The atomic clocks synchronize the modulation of the 

navigation data onto the carrier signal for the broadcast of satellite time and position data 
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plus the other satellite status information.  A more detailed explanation of the message 

content and signal transmission is given in a later section of this thesis. 

1.4 GPS Control Segment–Monitor Stations 
The United States Air Force maintains the control and monitoring of the GPS 

satellites after each has been initially deployed and initialized for space operation.  This 

ground operation of GPS is called the GPS operational control segment.  There are five 

automated globally distributed radio frequency stations deployed to control and 

continually monitor the GPS satellites.  These ground monitor stations are located at 

Ascension Island, Diego Garcia, Guam, Hawaii and Colorado Springs, Colorado.  The 

manned Master Control Station (MCS) is located in the Consolidated Space Operation 

Center (CSOC), which is about 15 miles east of Colorado Springs.  The MCS maintains 

each of the satellites in its proper orbit with small maneuvers, which are infrequently 

required.  The MCS makes corrections and adjustments to the satellite clocks as needed 

and can command major satellite maneuvers to relocate GPS satellites to fill in GPS 

coverage due to a gap after a satellite failure.  The MCS continually collects ranging data 

from all monitor stations of the GPS satellites, computes new long-term satellite 

ephemeris and clock translation data, and uploads the navigation data daily covering 6 

months into each Block IIR GPS satellite and 14 day uploads in older GPS satellites.  

These uploads can be accomplished at every monitor station except Hawaii, which only 

has the ground collection station.   

The MCS also monitors the status and health of every GPS satellite.  Part of the 

broadcast is the User Range Error (URE), which is the error projected to the user from 

each particular satellite.  It should be noted that most of the URE is attributed to the 

satellite clock errors, and that any clock error is indistinguishable from range errors.  The 

specified URE is computed as a weighted root-mean-square (rms) sum of radial, in-track 

and cross-track perturbations. 

1.5 GPS User Segment–Receivers 
A GPS receiver has several functions:  antenna, preamplifier, reference oscillator, 

frequency synthesizer, downconverter, an intermediate frequency (IF) section, signal 

processing and applications processing.  In most cases, the GPS receiver computes 
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navigation solutions and performs navigational tasks.  Other applications employ time 

transfers, attitude determination, differential surveying or even simple GPS data 

collection only.  So, the last functional area is more appropriately called applications 

processing to cover these other functions of the GPS receiver.  A brief explanation of 

these alternate applications is warranted here. 

Two users at previously known surveyed locations using two separate GPS 

receivers accomplish time transfers.  The time transfer receivers simultaneously track a 

common satellite for an extended time interval (typically 13 minutes) and determine the 

time difference between an external ground clock input to the time transfer receivers and 

the GPS clock.  By exchanging time differences between each ground receiver and the 

common GPS satellite clock, a second subtraction between the difference data shows the 

time difference between the ground clocks since the common GPS satellite clock cancels 

out.  This is called a time transfer, which mimics the actual transport of an ultraprecise 

clock to another clock’s location for comparing the actual clock differences needed in 

calibration and timekeeping.   

Attitude determination uses multiple GPS antennas with one GPS receiver that 

computes the length difference in the ranging data between all pairs of antennas.  The 

GPS receiver computes the ratio of the measured line-of-sight projection from the 

received time differences against the actual distance between each pair of antennas to get 

the geometric three-dimensional angles of the antenna platform relative to the GPS 

satellites.  A direct angular rotation in cosines then obtains the orientation relative to local 

level coordinates.   

The differential surveying techniques resort to placing a GPS receiver at a known 

benchmark as the base station and computing the expected GPS ranges between each 

visible GPS satellite and the benchmark against the measured GPS pseudoranges.  These 

differences are treated as corrections to the GPS pseudorange broadcasts and are either 

transmitted to any nearby remote GPS receiver or incorporated in postprocessing of the 

remote receiver’s GPS data.  This practice is called differential GPS (DGPS), and it 

allows the surveying community to obtain centimeter accuracy in GPS surveys over long 

baselines relative to a benchmark.   
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However, the vast majority of GPS receivers are used for navigation, and this 

processing is discussed later in detail.  A special feature of the GPS receiver is the ability 

to create an extremely precise ranging signal by reproducing and tracking the radio 

frequency (RF) carrier.  Because the wavelength of L1 is 19 cm, tracking it to 1/100th of 

the wavelength would provide a precision of 2 mm.  Unfortunately, precision is not 

accuracy.  To provide the same accuracy as the precision, the GPS receiver must 

determine which whole cycle or revolution in the phase has occurred since the signal was 

transmitted from the GPS satellite, which is called integer cycle ambiguity resolution.  

The surveying community uses multiple stationary receivers and processes the measured 

ranging data with double or triple differencing to resolve this ambiguity.  Strong GPS 

signals above 40 dB-Hz are desirable for this processing to measure precisely the 

fractional part of the cycle phase.  Dynamic users have a much harder problem resolving 

cycle ambiguity with far more cycle slips coming from multipath, ionosphere distortions 

and other error sources.  What will be attempted in this thesis is to use a single GPS 

receiver to obtain similar accuracy in the ranging data by a novel process.   

1.5.1 Functions of GPS Receiver Architecture Components 
The antenna may have a single or multiple element components with the 

necessary control electronics.  Depending on the performance requirements, it may be 

passive or active, although most GPS antennas are passive.  The antenna’s function is to 

receive the GPS signals while, if appropriately designed, reject multipath and interference 

signals.   

The preamplifier generally contains burnout protection, filtering, and a low-noise 

amplifier (LNA).  Its primary function is to set the receiver’s noise figure and reject out-

of-band interference. 

The reference oscillator provides the time and frequency reference for the 

receiver.  All GPS receiver measurements are based on the time-of-arrival of the 

pseudorandom noise (PRN) code phase and received carrier phase and frequency 

information.  So, the reference oscillator is the key component of the receiver.  It 

regulates the frequency synthesizer and drives the tracking loops internal to the receiver.  

Often, the same oscillator is used by the downconverter to convert the radio frequency 
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(RF) inputs to intermediate frequency (IF) output, which is easier to process and measure 

than direct RF signals. 

The IF electronics reject interference when processing out-of-band noise.  It also 

increases the amplitude of the signal and reduces noise to a workable signal level.  The IF 

electronics may include automatic gain control (AGC) circuits to maintain an adequate 

signal range and to suppress pulse-type interference. 

The signal processing function:  splits the incoming signal into multiple channels 

simultaneously, generates the reference PRN codes of the signals, acquires the satellite 

signals, tracks the code and carrier of the satellite transmissions, demodulates the data 

from the signals, determines the pseudorange measurements from the PRN code, extracts 

the carrier frequency and carrier-phase measurements, obtains the signal-to-noise ratio 

(SNR), and estimates the GPS system time.  The output of the signal processing are 

pseudoranges, pseudorange rates from the carrier frequencies, and delta pseudorange 

measurements from the carrier phase values, SNR data, internal receiver time tags, and 

GPS system information of all visible satellites. 

The applications processing uses its output to satisfy its design and application 

requirements.  Some of the diverse GPS applications include time and frequency 

transfers, static and kinematic surveying, ionospheric total electron content (TEC) 

monitoring, differential GPS reference station receivers, and GPS satellite integrity 

monitoring for detecting and alarming during anomalous satellite behavior.  Still, the 

GPS is primarily a satellite navigation system, and most GPS receivers are navigational. 

1.5.2 GPS Signal Offsets: Perturbations in GPS Ranging 
The GPS signal frequencies L1 and L2 were chosen within the frequency band to 

minimize the absorption of the signal power through the atmosphere.  This choice allows 

the use of omnidirectional antennas without requiring pointing to the satellites.  Signal 

attenuation from rainfall or fog does not interfere appreciably with acquisition and 

tracking.  However, the atmosphere does cause enough deviation that compensations are 

required for this level of accuracy.  The total amount of deviation is a function of the 

intensity of the propagation effects, the local elevation angle that the signal path travels 

through the atmosphere, and location of the GPS receiver.  The general order of 
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magnitude due to these offsets is ionospheric group delay, troposphere group delay 

caused by wet and dry atmospheres, relativity effects from special and general relativity, 

and multipath, which are discussed separately with more detail. 

The ionosphere contains ionized gases that vary widely from day and night times 

and with solar radiation fluxes.  The ion plasma is mostly electrons, and the total electron 

content (TEC) affects both the group and phase velocity of the GPS signals.  The peak 

ionosphere electron content is somewhere between 200 and 400 km thick and can vary by 

100 times between day and night (Klobuchar, 1996).  The refractive index of the 

ionosphere is a function of the frequency, but the refractive index for the troposphere 

affects both L1 and L2 equally.  To first order, the ionospheric delay varies inversely 

with frequency squared.  The effect can vary from 2 to 50 ns of group delay for a satellite 

at zenith.  At lower elevations, the effect can be 3 to 4 times worse excluding periods of 

maximum solar sunspot activity.   

The troposphere is a region of dry gases and water vapor that extends up to 50 km 

above the Earth.  The index of refraction is slightly greater than unity and nearly equal to 

free space.  This region is not generally ionized to any appreciable effect.  The excess 

group delay is typically about 2.6 meters for a satellite at zenith, but at low elevations 

below 15 degrees, the troposphere can increase the offset to 20 m.   

Relativity effects have been calculated and demonstrated in uncorrected GPS 

signal transmissions.  The mean gravitational red shift and the mean velocity of the 

satellites has been removed by a slight offset at the factory in the actual satellite 

transmission frequency, so that the received signal at Earth’s surface is the ideal L1 and 

L2 frequencies after the satellite has been deployed.  Because the satellite orbit is always 

an ellipse and not ideally circular, the gravitational potential and satellite velocity vary 

predictability, and a formula has been derived to eliminate the remaining relativistic 

effects in the GPS ranging information.  If no relativistic compensation was implemented, 

then the offset in frequency or equivalent clock rate would create ranging errors over 28 

km in 24 hours after the last message upload to the satellite (Ashby, 1990).   

Finally, multipath is highly dependent on the reflective environment that can 

interfere or smear the GPS signal.  Generally, the direct signal is stronger than any 
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reflected signal from multipath, and the GPS signal processing usually eliminates such 

unintentional interference, but exceptions do exist.  For example, the reflected signal’s 

amplitude from the sea surface can be at times as large or larger than the direct signal.  

When the multipath reflects a delayed signal that appears within the code chip, this 

superposition tends to skew the resolution of the measured pseudorange signal (a type of 

smearing) and degrade the accuracy somewhat in the navigation solution. 
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Chapter 2 GPS Signal Structure and Performance 
The GPS signal is a type of spread spectrum signaling, which the fundamentals 

are discussed.  A detailed explanation of the coarse/acquisition and precision codes is 

given.  Also, the signal to noise ratio and the signal performance characteristics are 

discussed with performance bounds on C/A and P(Y) code pseudorange tracking. 

2.1 Spread Spectrum Signal Fundamentals 
Spread spectrum signaling is a method to add a data signal of bandwidth Bd by 

modulating it onto a sinusoidal carrier transmission and then spreading its bandwidth to a 

much larger value B > Bd.  The bandwidth spreading can be accomplished by multiplying 

the data-modulated carrier by a wide bandwidth-waveform s(t) for spreading.  A data bit 

stream, D(t), of 1 and –1 values and a clock rate fd are first modulated on a carrier signal 

of power Pd to form the narrow bandwidth signal: 

tcosP2)t(D)t(d ω=  

This signal of bandwidth Bd is then spread by a binary pseudorandom signal s(t) where 

s(t) = ±1 and clock rate fc that greatly exceeds the data bit rate (fc>>fd).  The data and 

spreading waveforms have the power spectral density of: 
2

f/F
)f/F(sin

f
1)F(G ⎥

⎦

⎤
⎢
⎣

⎡
π

π
=  

Because the time of the data and clock transition are synchronous, the spread spectrum 

product D(t)s(t) has exactly the same spectrum as that of s(t) only with the following 

form. 

tcosP2)t(D)t(s)t(d)t(s d ω=  

The spreading signal is  where p(t) is a rectangular unit pulse over 

the interval [0,T

∑
∞

−∞=

−=
n

cn )nTt(pS)t(s

c] as 1/Tc = fc for the frequency of the clock rate and Sn is a 

pseudorandom code sequence.  Generally, different spreading waveforms can separately 

modulate in-phase and quadrature carrier components.  For GPS, the discussion is 

restricted to rectangular pulses and biphase modulation.  This form of spread spectrum is 
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called direct sequence-spread spectrum, which is one of the different forms of spread 

spectrum.  This form of spread spectrum provides a means to recover precise timing and 

the pure RF carrier.   

The direct sequence-spread spectrum signal then passes through a channel with 

additive white noise n(t) of power spectral density N and interference b(t) to form the 

receive signal r(t) = s(t) d(t) + n(t) + b(t) where b(t) is a pure tone interference of power 

Pb.  Inside the receiver, an identical replica of the spreading signal s(t) is generated and 

correlated by mixing and filtering with the received noisy signal.  The signal has a narrow 

autocorrelation envelope of width inversely proportional to the clock rate fc.  The 

multiplier converts the spread signal into d(t) s2(t) = d(t) since s2(t) = 1.  The multiplier 

compresses the spread spectrum signal back to its original narrow bandwidth leaving only 

the data modulation.  The narrowband interference b(t) has been spread to look like s(t) 

due to the multiplier, similar to the manner which the narrowband signal d(t) was spread 

in the transmitter.  Filtering this multiplier output through a bandpass filter passes the 

narrowband signal d(t) relatively undistorted with only a fraction of the noise and 

interference power following d(t) (Spilker, 1996).   

Demodulation of this filter output produces a bit error rate that is determined by 

this noise and interference level.  If only thermal noise was present, then the effects 

cancel the spreading and despreading by the pseudorandom (PN) code s(t) in the 

transmitter and receiver.  So, the use of properly synchronized spread spectrum signaling 

neither improves nor degrades the signal performance against a thermal noise 

background. 

But, the performance against a steady interference is greatly improved, because 

the interference power level is reduced by the ratio of the clock rates fc/fd, where fc is the 

PN chip rate regulated by the internal clock and fd is the data bit rate.  The ratio, fc/fd, is 

termed the processing gain of the spread spectrum system, because that ratio determines 

what fraction of the interference power passes through the output.  This property of 

spread spectrum signaling is effective against even broader classes of interference.  
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2.2 Autocorrelation Functions and Spectrum 
A random sequence of equally probable events, each lasting the time interval Tc = 

1/fc, the inverse of the clock rate, has a triangular autocorrelation function and a power 

spectral density shaped as (sin (πτf)/πτf)2.  Pseudorandom codes or sequences can be 

generated with suitable feedback shift registers.  For GPS, Tc = 20 ms for the chip length. 

2.3 Multiple Access with Spread Spectrum Signaling 
The GPS design takes advantage of using multiple signals simultaneously to get 

access on the same frequency channel with minimal interference between signals.  Spread 

spectrum signaling has the capability of providing code division multiple access 

(CDMA), provided the number of signals M is not too large.  Even though all GPS 

satellites are not equally distant from the GPS receiver, a judicious choice in 

pseudorandom codes can be nearly uncorrelated for all possible time offsets in the 

various multiple M transmissions from M satellites.  For example, if all M signals are 

received with exactly the same code clock delay, it is possible that multiple access 

interference is negligible provided M ≤ fcTd where fd = 1/Td is the clock bit rate.  An 

analysis of this feature is described next. 

Suppose two multiple access signals s1(t) and s2(t) have uncorrelated 

pseudorandom codes and are transmitted on the same frequency channel and received 

with independent random timing.  The receiver mixes the input with the desired reference 

signal code s1(t) to get a correlator output of s1(t - τ1) [s1(t - τ1) + s2(t - τ2)] = 1+ s1(t - τ1) 

s2(t - τ2).  The unit term is the objective, and the multiple access term is s1(t - τ1) s2(t - τ2), 

which can be defined as Gma(f). 

Gms ( f ) = Ps Gs∫ (υ)Gs (υ − f )dυ and

Gma (0) = Ps Gs
2(υ)dυ∫

 

Assume the processing gain is large where fc/fd >> 1.  Then, only the multiple access 

interference spectrum near f = 0 is significant, because the correlation filters have a 

bandwidth on the order of fd.  The integral can be computed. 
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If the signal is filtered to include only the main lobe, the factor increases from 2/3 to 

about 0.815.  If the signal spectrum is rectangular, the factor is unity.  The quantity Eb is 

the energy per bit Eb = Ps fd .  The multiple access equivalent noise density can be 

calculated to determine how many M-1 interfering access signals can be tolerated in the 

presence of the desired signal for each tracking channel.   

 
∫

oo
o

s

oo

s
o

os
2
s

o

s
ooeq

fff,
f2

P
 spectrum,r rectangulafor           

Nf
P)1M(

1N

f),f(Gfor            df)f(G
N

P)1M(
1NN

<<−⎥
⎦

⎤
⎢
⎣

⎡ −
+=

∞<<∞−⎥
⎦

⎤
⎢
⎣

⎡ −
+= ∞

∞−

 

For biphase modulated signaling, the Eb Noeq  term should be 10 or greater if no error 

correction coding is employed, as is done in the open GPS design.  Then, the number of 

equal power multiple access signals is limited by  

 M <
Nofc

Ps

+1 =
Nofc

Es fd

+1 =
1
10

fc

fd

⎛ 

⎝ 
⎜ ⎜ 
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Es

N oeq

= 10 

For example, if fc = 106 Hz and fd = 50 bit/second, then M < 2001.  This is one desirable 

characteristic in the spread spectrum transmission that allows GPS receivers to pick out 

the desired GPS signal from multiple transmissions of different codes over the same 

carrier.   

Depending on the choice of the number of registers used to generate the code, the 

number of states available is 2m – 1 = n for m binary shift registers.  The autocorrelation 

of the pseudorandom sequence where s(t) = ±1 is: 

 R(i) =
1
n

s(t)s(t + i) dt
0

n

∫  

When the maximal length sequence becomes more random in appearance, then the 

spectrum approximates the (sin z/z)2 of the random sequence, and the autocorrelation 

function is a sharp, narrow peak.  This autocorrelation waveform with a high clock rate 
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signal can be used for very accurate measurements of time and range, which is 

characteristic of GPS.   

As mentioned before, GPS satellites transmit C/A and P(Y) codes continually.  

Time multiplexing the two codes was not adopted (i.e., transmitting the short C/A code 

completely then switch to a portion of the long P(Y) signal).  This option would have 

disrupted the continuous carrier phase measurements, and time gating would have 

lowered the cross-correlation performance of the GPS transmissions.  The GPS signal 

design had the civil C/A signal modulated on the in-phase component of the L1 carrier 

and the P(Y) code of the military modulated on the quadrature phase (90 degree rotation).  

This allows a nearly constant envelope around the carrier even though the signal strength 

of C/A is 3 dB higher than P(Y).  The GPS signal without the modulation has the carrier 

form XPi(t) cos(ωot) + XCo(t) sin (ωot).where XP represents the magnitude of the P(Y) 

code and XC represents the C/A code magnitude.  All data are biphase modulated 

identically on both in-phase and quadrature components.   

2.4 GPS Radio Frequency Selection and Signal Characteristics 
The L-band was chosen for several reasons.  Both the satellite transmission 

powers and received signal powers were acceptable, and the satellite antenna patterns 

covered the Earth quite effectively.  C-band paths had nearly 10 dB higher losses when 

using the omnidirectional receiver antenna with the fixed transmit antenna beamwidth 

and range.  The ionospheric delay and fluctuation affected UHF much worse, and there 

was too much use in UHF to obtain two large 20 MHz bandwidth frequency assignments 

from the international radio regulatory commission. 

Each of the L1 and L2 center frequencies is a coherently selected multiple of 

10.23 MHz master clock.  All the signal clock rates for the codes, radio frequency 

carriers and the 50 bps navigation data stream are coherently related.  In particular,  

 
MHz23.10120MHz60.12272L
MHz23.10154MHz42.15751L

×==
×==

 

The ratio of L1/L2 = 77/60, which is exploited in the enhancement design proposed in 

this thesis.  The ionosphere delays and corrections are also discussed in a separate 
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section.  The relativity effects in the GPS transmissions are explained in a later section as 

well. 

2.4.1 GPS P and C/A Codes 
The L1 signal is modulated by both a 10.23 MHz clock rate for the P(Y) code 

signal and by a 1.023 MHz C/A code.  The binary modulating signals are formed by 

adding the 50 bps binary data D to form C/A⊕D on the in-phase carrier and P⊕D on the 

quadrature.  The peak power of the C/A signal exceeds the peak power of P(Y) code by 

13 dB, because C/A is 3 dB stronger and has 1/10 the chip rate and bandwidth of P(Y) 

code.  The rms clock transition time difference between the C/A and P(Y) code clocks is 

required to be less than 5 ns.  Both C/A and P codes are from a class called product codes 

where each is the product of two different code generators clocked at the same rate.   

The P code for any GPS satellite is the product of 2 pseudorandom codes X1(t) 

and X2(t+nT), where X1 has a period of .5 seconds or 15,345,000 chips, and X2 has a 

period of 15,345,037 or 37 chips longer.  Each of these numbers is relatively prime, so 

the product is 2.35469592765 x 1014, which is slightly more than 38 weeks long.  For 

GPS, this overall period has been subdivided so that 37 possible GPS transmitters gets a 

one-week interval of code, which does not overlap with any other GPS transmitter.   

The C/A code is relatively short with a period of 1023 bits or one ms duration at 

the 1.023 Mbps bit rate.  This short code permits rapid acquisition with only 1023 bits to 

search.  Each C/A code is the product of two 1023 bit pseudorandom codes G1(t) and 

G2(t).  Only 37 codes are defined for GPS, so as to maintain uniformly low cross-

correlation with the sidelobes for all other needed satellite codes and possible offsets.  

Epochs of the G code occur at 1 kbps and are divided down by 20 to get the 50 bps data 

clock.  All clocks are in phase synchronism with the X1 clock of the P code.  

2.4.2 GPS Data Format 
Using the 50 bps data bit rate, there are five subframes of six seconds each for a 

total frame period of 30 seconds.  Each subframe has a Telemetry (TLM) word at the 

beginning for synchronization identification.  A Handover Word (HOW) that contains the 

Z-count follows the TLM word for handover from the C/A code to the P code.  The 
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extraordinarily long P(Y) code makes it extremely difficult to acquire without assistance, 

because a receiver correlator must be timed to within one P-code chip or 0.1 μs for 

synchronizing.  The number of the X1 epochs from the P(Y) code is the Z-count since the 

beginning of the week.  There are four X1 epochs per data subframe of 6 seconds.  When 

multiplied by 4, the HOW equals the Z-count at the beginning of the next 6-second 

subfame.  With timing from the relatively short C/A code and knowing the subframe 

epoch time and HOW words, the P-code at the next subframe epoch can be readily 

acquired.  

The 5 subframes contain the data transmitted from the GPS satellites, which takes 

12.5 minutes to complete the entire transmission.  Subframe 1 contains the satellite clock 

corrections and satellite quality, Subframes 2 and 3 list the satellite’s ephemeris, and 

Subframe 4 contains, among other things, the satellite’s almanac with ionosphere and 

UTC corrections.  Subframe 5 has 25 different messages with each message contained in 

a separate 30 second frame.  So, each GPS satellite transmits a 30-second record or frame 

of data that contains the first four subframes of information about itself and sends the 

fifth subframe about one of the other satellites.  Thus, each satellite eventually broadcasts 

the entire almanac for all the other GPS satellites in 12.5 minutes.  The almanac is very 

useful for predicting weeks and months into the future GPS when predicting satellite 

coverage above the local horizon so that appropriate steps can be taken with the receiver 

tracking loops to compensate Doppler shifts in the GPS signals. 

2.4.3 Estimate of Delay Measurement Noise on Code and Carrier 
Estimate measurement error by white noise added to the carrier over the 

bandwidth: 

 r(t) = 2Ps sin(ωo t +φ ) + Ns (t)sin(ωot + ˆ φ ) + Nc cos(ωo t + ˆ φ ) 

Multiply it with a nearly pure quadrature coherent reference phase signal (e.g. 

 and the phase detection through a low-pass filter to obtain: 2 cos(ωot + ˆ φ )

r(t)2 cos(ωo t + ˆ φ ) ≈ 2Ps sin(φ − ˆ φ ) + N ct ≈ 2Ps (φ − ˆ φ ) + Nc  for φ − ˆ φ << 1. 
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The one-sided noise power spectral density of Nc(t) is 2No.  If the phase error  is 

filtered to a bandwidth of B

φφ ˆ−

L, then the output phase difference plus phase noise can be 

written in a normalized form , where φ − ˆ φ + φn

 φn
2 =

NoBL

Ps

  or as an equivalent rms time error  σT =
1

2πfo

1
S/ No

. 

S/No is the equivalent signal-to-noise ratio in dB.  The GPS carrier phase noise is 

specified to be sufficiently low to allow tracking with a 10-Hz noise bandwidth.  If a 

carrier-tracking loop of bandwidth BL=10 Hz is employed and the C/No is 45.2 dB, then 

a signal-to-noise ratio in the loop under linear conditions is S/No = C/No BL = 45.2 – 10 

= 35.2 dB, since at frequency fo, σφ = 2πfoσ T .  The S/No corresponds to a rms phase 

noise σφ where:  

 σφ
2 = (σ T 2πfo )2 ≈

1
S/ No

  or  cσ T =
λ
2π

1
S/ No

 

when the S/No for the loop is sufficiently high.  If S/No = 35.2 dB or 3311 and the 

wavelength λ = 19.05 cm for L1, then the output phase error in distance terms is 

. mm5.0c T ≈σ

So, the carrier-tracking phase noise measurement error from thermal noise is 

about 0.5 mm.  Other carrier phase noise and dynamic tracking errors would increase this 

estimate to several mm, but the carrier phase measurement error is still very small.  It had 

been considered that carrier phase measurements had an ambiguity in absolute number f 

phase cycles and could only be included as differential phase measurements.  If no cycles 

are slipped or miscounted, the period of satellite visibility can continue for several hours 

of tracking.  The accumulated delta range (ADR) can be added continuously from carrier 

phase measurements over time and converted into distance by multiplying by the speed 

of light.  The ADR curves are smooth with a bias offset from the ionosphere, but they 

have the same shape as the pseudorange code measurement curves, except the code curve 

has much higher noise. 

Code tracking noise is on the similar order of fc = 1/Tc, = 1.023 MHz for the C/A 

code.  If the received code-tracking signal is converted to baseband and multiplied by a 

delay replica of the signal, then the output code signal is: 
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T
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⎠

⎞
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⎝

⎛ τ−τ
≈+τ++τ+  

by replacing the sine term with the small angle τ − ˆ τ << Tc .  A crude estimate of the rms 

delay error is then  

 σT =
Tc

S/ No
=

Tc

Ps / NoBL

 

With a code-tracking loop bandwidth of 3 Hz, C/No = 45.2 dB-Hz and all terms are 

linear, then the code tracking loop is S/No = 45.2 – 4.8 = 40.4 dB.  For this nonoptimum 

code-tracking measurement, the rms tracking error is: 

 στ ≈ Tc
1

S/ No
= 9.32 ns  or  cστ ≈ 2.8 meters   

when S/No >>1 and Tc = 0.9775 μs for the 1.023 Mbs C/A code.  Code-tracking errors 

are larger than carrier-tracking errors by roughly by the ratio of carrier frequency to code 

clock frequency.  These estimates are only intended as crude estimates to give a rough 

idea of the true accuracy when collecting measurements.
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Chapter 3 GPS Receiver Equipment Architecture 
Generally, the GPS receiver equipment does two measurement operations.  The 

first is the receiver tracks the GPS signals, which, in this application, is accomplished 

with a delay lock loop (DLL) for measuring both pseudorange.  The second is the 

receiver measures the accumulated delta range (ADR), which is a pseudorange-rate 

measurement using the carrier.  Most GPS receivers have one antenna with a low-noise 

amplifier, although multiple antennas can be used either for GPS attitude determination 

receivers or for beam steering to enhance reception and exclude potential jamming 

sources.  The antenna output is fed into a combined radio frequency bandpass filter and 

low-noise amplifier for amplifying the signal and filtering out high-level interfering 

signals from nearby frequencies.  The radio frequency filters must have low signals losses 

and maintain sufficient bandwidth and phase linearity to minimize distortion of the C/A 

and P(Y) code signals.  The radio signals pass through many stages of amplification, 

downconversion, intermediate frequency (IF) amplification and filtering, analog to digital 

(A/D) measurements, and finally sampling with quantization.  This last stage can be done 

either in the IF or baseband regions.  The in-phase (I) and quadrature (Q) samples are 

taken from the input signals with noise.  All of these operations can be combined in a 

single monolithic microwave integrated circuit chip (MMIC).   

The I and Q samples are fed to a bank of DLLs, which each channel tracks a 

different satellite, measures pseudorange and recovers the carrier which is biphase 

modulated with the GPS broadcast data.  Each channel with its DLL obtains values for 

the pseudorange, carrier phase and navigation data using digital processing.  Some 

advanced GPS receivers have 12 or more parallel DLLs channels to track nearly every 

possible visible satellite at one time.  The receiver collects the parallel pseudoranges, the 

carrier phase measurements, and the navigation data where each satellite position is 

calculated and the pseudorange and clock corrections are made.  As discussed later, the 

receiver corrects for ionosphere delay, troposphere delay, relativistic effect, Earth 

rotation effects and equipment delays.  All of these data are then processed by an 

Extended Kalman filter to smooth the data results and compute a solution at the antenna’s 

phase center.  If other components are part of the total navigation system, such as an 
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inertial measurement unit (IMU), then a lever-arm translation of the GPS navigation 

solution is usually made to combine the GPS result with other navigation subsystems.    

3.1 Coherent Early/Late Delay Lock Tracking 
Both coherent code and carrier tracking are performed.  The received signal has 

additive white noise.  The signals should be bandlimited with finite rise time signals and 

with a continuous autocorrelation function that is effectively differentiable.  The delay 

lock loop uses an identically generated signal that is time offset, which determines the 

total delay between the GPS satellite clock at transmission to the receiver’s internal clock 

at reception.  These operations are performed in discrete time digital operations.  The 

timing is accomplished by the finite rise time of the correlated waveform as it crosses the 

reference power level.  This demodulated waveform resembles a trapezoidal function 

with rounded corners instead of the ideal step function.  The correlated signal makes its 

transition between levels (i.e. transitions from –1 to +1 or +1 to –1).  The only portion of 

the waveform useful for time delay measurement is the transient rise time, measured 

usually at the half power point.  This DLL is a suboptimal design compared to nearly all 

other communication systems using all of the waveform.  The portion of the overlapped 

code maintains power when mixing the input and generated codes, but the unmatched 

portion will cancel out between the input and generated codes due to the random nature 

of the code.  The autocorrelation function is the result of slewing the generated code. 

 

Figure 4:  Correlation Curve between Input and Generated Code Tracking Loop 
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The simple solution to this deficiency with the DLL is to incorporate two delay 

lock loops, one that has its reference waveform set early by T/2 of a chip width T and the 

other set late by T/2 of the chip width.  Here, a chip refers to the code length of either the 

C/A code or P(Y) code between transitions.  The output two signals are differenced to 

produce the half-early minus half-late DLL pattern shown in Figure 5.  The sharp slope 

gives a much finer resolution at the zero crossover point, which is the reception time of 

the incoming signal.   

 

Figure 5:  Early – Late Correlation Curve for Half Chip Spacing 
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Chapter 4 GPS Satellite Navigation Broadcasts 
From first principles using Newton’s second dynamical law ( ) and 

Newton’s law of gravitation 

amF GG
=

( )2rmMkF = , one can derive the equations of motion for a 

satellite orbiting a uniform spherical Earth as 3rkMrr −=��  where the acceleration r  is 

collinear with the position vector .  No acceleration exists perpendicular to the position 

vector with no velocity in that direction either.  Convert the two dimensional vector 

between Cartesian x and y coordinates to polar coordinates of r and θ to obtain two 

differential equations of motion.  One is immediately integrated so that  

which shows that angular momentum is conserved and orbital motion is constrained to 

planar motion.  The steps to integrate the other differential equation for this two-body 

problem are documented in many intermediate physics textbooks (Marion, 1970).  The 

result is the elliptical equation for radial motion, 

��

r

constant,r 2 =θ�

υ+
−

=
cose1

)e1(ar
2

 where a is the semimajor 

axis, e is the eccentricity and υ is the true anomaly angle.  Other variables that are more 

convenient for calculations are eccentric anomaly E and the mean anomaly M where 

 and MEsineE =− )tt(nM 0−=  with n being mean motion such that 3a
n μ

=  and μ 

is the reduced mass.  The relationship between true anomaly υ and E is 

)eE(cosEsine1tan 2 −−=υ .  The next figures (Jeyapalan, 1993) illustrate the orbital 

geometry of these six parameters (semimajor axis a, eccentricity e, argument of perigee 

ω, inclination i, right ascension Ω, .and mean anomaly M): 
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Figure 6:  Orbital Plane Parameters 
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Figure 7:  Parameters Orienting Orbital Plane 

However, the world is neither homogeneous in its density nor perfectly spherical 

in shape.  Letting V be the gravitational potential, the problem of solving for the orbital 

equations of motion can be obtained from Laplace’s equation:  .  In spherical 

coordinates, the partials can be separated, which the most difficult is the Legendre 

equation with a series solution containing constants called Legendre or associated 

Legendre polynomials.  The complete real solution (Kaula, 1966) of the Laplace equation 

is: 

0V2 =∇

 ∑∑
∞

=

∞
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The spherical harmonics are the products of the Legendre polynomials with each 

trigonometric expression in the square brackets.  The spherical harmonics are mutually 

orthogonal, so that the general representation of a gravitation surface potential is a series 

of spherical harmonics, analogous to the Fourier series for a function in rectilinear space.  

It is noted here that the C20 term is a thousand times larger than any subsequent 

coefficient in the series. 

Fortunately, the noncentral gravitational field of the Earth is slightly perturbed 

from the pure central force problem.  So, the Keplerian ellipse and its orientation can be 

used as a coordinate system with 6 parameters of the Keplerian ellipse replacing the six 

terms of position and velocity of the earlier central force problem.  Laplace’s equation is 

changed from 3 second order differential equations into 6 first order partial differential 

equations.  The method of solution is through the use of Lagrangian brackets to set up 6 

simultaneous solutions of the Laplace equations.  The derivation (Kaula, 1966) is very 
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involved with the 6 Keplerian elements exhibiting a first derivative in terms of the 

forcing function F, which is not a central force, but a perturbing force.  If the series 

solution is shortened to just the primary harmonic, )e(G)i(F
a
a

a
C

V 210202

2
e20

2010 ⎟
⎠
⎞

⎜
⎝
⎛μ

= , 

the forcing function 2010V
a

2F +
μ

=  yields three nonzero first derivatives in ω, Ω and M.  

GPS orbits took advantage of the first derivative of the argument of perigee, ω, which is:   

[ ]icos51
a)e1(4

aCn3
dt
d 2

222

2
e20 −

−
=

ω . 

The original GPS constellation was chosen in inclination to make this derivative be zero, 

which is why the Block I GPS satellites were in orbits of 63.435 degree inclinations.  The 

mean anomaly deviation is an along-track error from the standard orbital prediction.  

Thus, the earliest GPS constellation had only to correct for the drift in right ascension 

with minimal orbital corrections.  The first derivative in right ascension is given: 

icos
a)e1(2

aCn3
dt
d

222

2
e20

−
=

Ω  

Subsequent satellites after the initial Block 1 satellites were placed by the Space 

Shuttle, which is limited to a maximum of 55 degree inclined orbits due to fuel limitation, 

which all subsequent and new operating GPS satellites are or will be placed.  
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Chapter 5 GPS Navigation Algorithms 
The overall objective in GPS navigation is to determine the position in X, Y, and 

Z Earth-Centered, Earth-Fixed (ECEF) coordinates and time in the GPS timescale.  These 

crucial terms and any other parameters are collectively the “state” of the system.  In 

moving applications, the three components for velocity and three for acceleration are 

added.  In some systems, other components such as an Inertial Measurement Unit (IMU) 

may be included.  For this research, only the sole GPS receiver is being considered.  The 

overall processing involves both the measurement model and a dynamic model that are 

discussed in detail.  The current measurement model is constructed from a linearized 

form of the irrational equations that describe the geometry of the problem, and this 

formulization then relies on a converged iteration for solving the initial parameters.  The 

dynamic model continues in the form of a linearized Kalman filter to predict the current 

dynamics of the system, which is used to predict the Doppler shifts in the GPS signals so 

that the tracking loops can follow the signal frequency without loss of the signal.  Some 

problems may occur when the iterative technique converges prematurely with this 

standard method.  To correct these problems, a new derivation of an exact direct 

navigation solution without iteration is given to replace the iterative technique. 

5.1 Standard GPS Measurement Model 
Ideally, the true distance between each GPS satellite and the receiver’s antenna is 

computed by taking the time difference between the reception and transmission and 

multiplying that by the speed of light (c).  This would be possible if there were no 

propagation delays caused by the ionosphere and troposphere and by relativity.  Worst of 

all, the internal receiver’s clock or oscillator is not calibrated to the GPS atomic 

timescale.  Fortunately, this large timescale offset, when multiplied by the speed of light, 

can be solved with the position parameters.  The clock offset with the actual range 

determines the measurement called pseudorange (PR).  Let the xs,ys,zs be the position of 

the satellite at transmission, xr,yr,zr be the position of the receiver at reception and the 

time difference b = (τrec - τsat), and error ε, then the pseudorange can be expressed as: 

ssr
2

ssr
2

rs
2

rs
2

rs )(c)rs()(c)zz()yy()xx( ε+τ−τ+−=ε+τ−τ+−+−+−=ρ
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 At least 4 satellite equations of this form are solved simultaneously to get the 

three dimensional position and time offset.  The standard method linearizes this system of 

equations about some nominal value for the best estimate.  By taking a Taylor series 

expansion about the nominal value, only the first order term is kept and the result is: 
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The fractions in the first matrix are the cosine angles of the unit line of sight from 

the receiver to the jth satellite.  The Δεj are the residual errors left after the known offsets 

have been removed in each pseudorange.  If there are additional satellites in view, 

additional rows are inserted in the above matrix equation for an overdetermined system 

of equations.  If the residual errors are negligible compared to the matrix multiplication 

and considered zero, then the matrix solution becomes: 

 ΔR = G ΔX or ΔX = (GTG)−1 GT ΔR  in least-squares solutions, or, 

ΔX = (GTWG)−1 GTWΔR  for weighting individual observations with W, and 

  is the navigation solution using this standard method.   X = Xo + ΔX

The typical approach is to assume at initialization that the nominal position is at 

the center of the Earth (0, 0, 0), and the navigation solution will converge since the GPS 

satellites are overhead.  Thereafter, the solved position from this last process is used as 

the next nominal position for Xo.  The GPS literature has not had problems with this 

technique yet, so the opinion has been that it will always work.  However, problems with 

the standard method have not yet been well documented in the literature, specifically that 

this standard method can converge prematurely, especially when the receiver may be 

located near a satellite.  The problem may occur more often in the real world when more 
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pseudolites, which are GPS ground transmitters, are installed at airports for additional 

coverage.  Whenever a plane starts up at the airport with a nearby pseudolite, the onboard 

GPS receiver may converge prematurely to an incorrect navigation solution.  This is 

discussed in further detail in the research portion of this thesis. 

5.2 Newton’s Method for Systems of Equations 
For a system of nonlinear equations f(x), apply Newton’s method by taking only 

the first order partial derivatives about a set of nominal values placed in vector form as X.   

 

  

y1 = f1 (a1, ...a n ) +
∂f1

∂x1

(x1 − a1) + ... +
∂f1

∂xn

(xn − an )

              #

yn = fn(a1,...an ) +
∂fn

∂x1

(x1 − a1 ) + ... +
∂fn

∂xn

(xn − an )

 

This is symbolized as an equivalent one matrix-vector equation. 
 y = f(a) + J(a)(x − a) 

In Newton’s method for a system of equations, the nominal values are initially 

symbolized as x1.  Replace each component of f by its tangent plane approximation at x = 

x1.   
 y = f(x1 ) + J(x1 )(x − x1 ) 

The next approximation x2 to the system is the root at the point where each tangent 

vanishes or equivalently where y is zero.  Replacing y by zero gives an equation for x2.   

 
0 = f(x1 ) + J(x1 )(x2 − x1 ) or

x2 = x1 − J(x1 )−1 f(x1 )
 

Now, linearize about x2 to get x3.  Continue this until the desired convergence is 

achieved. 

  where the Jacobian is the n x n matrix of xk +1 = xk − J(xk)−1f(xk)
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Nothing in Newton’s method precludes additional convergences from additional 

solutions whenever the inverse Jacobian is nearly zero from numeric combinations of the 

partial differentials.  Such occurrences are rare as found in this research, but these 

exceptions do satisfy the usual convergence criteria to stop iterating after n arbitrary 

attempts even though the desired solution has not been reached.  The premature stalling is 

documented with two regions although other such regions exist in the example given in 

Chapter 8, which also contains the new exact derivation of the navigation solution. 

5.3 Least Squares for an Overdetermined Linear System 
Consider a general overdetermined linear system Ax = b of m equations with n 

unknowns as m ≥ n.  The residual is r = b – Ax and the Euclidean norm of the residual is 

the square root of rTr.  The least squares solution to Ax = b minimizes  

  rTr = (b − Ax)T (b − Ax)

The minimum exists for the above matrix equation where the partial derivatives with 

respect to each of the variables x1, x2, . . . xn is then set to zero.  Differentiate with respect 

to each variable and set the derivative to zero.  Observe that  

   r
Tr = r1

2 + r2
2 +"+ rm

2  

where ri is the ith component of r.  Differentiating the above equation with respect to x1,  

 
  

∂
∂x1

rTr = 2r1
∂

∂x1

r1 + 2r2
∂

∂x1

r2 +" + 2rm
∂

∂x1

rm  

The ith component of r = b – Ax is equal to bi minus the ith row of A times x: 
   ri = bi − ai1x1 − a i2x2 −" − ainxn  

As the partial derivative of ri with respect to x1 is –ai1, then the partial equation would be:  

 
  

∂
∂x1

rTr = −2r1a11 − 2r2a21 −" − 2rmam1 

In general, the partial derivative of rTr with respect to xj is given by 

 
  

∂
∂xj

rTr = −2r1a1j − 2r2a2 j −" − 2rmamj  

The right side of the above partial equation with respect to xj is –2 times the product 

between the jth column of A and r.  The jth column of A is the jth row of AT.  Since the 

jth component of ATr is equal to the jth column of A times r, the partial derivative of rTr 
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with respect to xj is the jth component of the vector –2ATr.  The Euclidean norm of the 

residual is minimized at that point x where all the partial derivatives vanish: 

 
  

∂
∂x1

rTr =
∂

∂x2

rTr =" =
∂

∂xn

rTr = 0  

Since each partial derivative is –2 times the corresponding the ATr component, then ATr 

= 0.  Replace r by b – Ax and obtain AT(b - Ax) = 0, or in the normal equation form, 

ATAx = ATb.  Any x that minimizes the Euclidean norm of the residual r = b – Ax is a 

solution to the normal equation.  Also, any solution to the normal equation is a least 

squares solution to the overdetermiend linear system Ax = b, which makes the least-

squares a minimal solution. 

Another way of analyzing the least squares is to use vectors.  The set of vectors 

Ax corresponding to various choices of x is the range space of A.  The collection of 

residuals b – Ax is the set of vectors, which point from the range space to b.  The shortest 

residual is perpendicular to the range space.  This means the dot product between each 

vector in the range space and the shortest residual is zero.  Since each column of A is 

contained in its range space, the dot product between each column of A and the least 

squares residual must be zero.  The dot product between each column of A and the 

residual b – Ax is given by the matrix-vector product AT(b – Ax).  Therefore, the least 

squares solution (Hager, 1988) to Ax = b satisfies the matrix equation AT(b – Ax) = 0 as 

well as the normal matrix equation ATAx = ATb. 

5.4 Doppler 
The numerically controlled oscillator (NCO), which regulates the carrier tracking 

loop, provides an estimate of the observed frequency shift of the received signal.  As the 

user and satellite have motion, the observed frequency differs from the L1 or L2 

frequencies.  The Doppler shift, D, between the satellite and receiver is the projection of 

the relative velocity onto the line of sight   
G
L , multiplied by the transmitted frequency and 

divided by the speed of light.   

 
  
D j = −fL1

G
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An estimate of the Doppler shift will keep the tracking loop on the apparent frequency 

while undergoing motion.   

5.5 Accumulated Delta Range 
The signal processor produces the accumulated delta range (ADR) by following 

the commanded values to the NCO required to maintain lock on the signal.  The signal 

processor keeps track of changes in the observed range to the satellite.  A common use of 

ADR values is to smooth the noisy pseudorange measurements.  The main difference 

between ADR and pseudorange measurements is that an ADR has no set starting value.  

ADR measurements only keep track of the total change in range, but no known method 

exists to determine instantly the whole number of carrier cycles between the satellite and 

the antenna with a single receiver.  In Differential GPS (DGPS), it is possible to 

determine the differences in the cycles between two nearby receivers.  For precision 

DGPS surveying, one receiver is the designated base station located at a previously 

surveyed benchmark and the remote GPS receiver obtains GPS range and cycle data.  In 

postprocessing, the remote receiver’s data are limited to the common view satellites and 

differences against the base station data.  The single difference phase observable is 

constructed by subtracting the phase measurements simultaneously observed with the 

same satellite, which cancels virtually all the errors associated with that satellite (mostly 

the satellite clock difference from GPS absolute time).  Subtracting the single-difference 

phase observable data at the same time, which now eliminates the two receiver clock 

errors in the equations, generates a double-difference phase observable.  If the double-

difference data are not noisy, then the total number of cycles can be projected onto the 

line of sight.  Integer possibilities are chosen until one stable solution is left while other 

possibilities drift away from the stationary receiver.  This solution now obtains a very 

precise distance in cm between the two GPS antenna.  All of this involves intensive 

postprocessing and careful editing of anomalous cycle slips in the data to get the desired 

result (Leick, 1995).   

ADR data are commonly used in single GPS receivers to smooth the noisy 

pseudorange measurements.  One technique uses a weighted average of the code and 

carrier measurements (Hatch, 1982).   Another technique integrates the ADR for the 
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reference trajectory and then the Kalman filter updates the reference trajectory using the 

pseudrange data at a slower rate (Hwang and Brown, 1989).   

This thesis proposes a novel way to apply the knowledge of the pseudorange 

accuracy and the dual frequency phase measurements to get a revised range measurement 

within centimeter precision.  This technique does not require any accumulated delta range 

in the real-time GPS measurements and can be accomplished with a single GPS receiver. 

5.6 Satellite Navigation Input 
The navigation algorithm requires the satellite position as a minimum to solve for 

the receiver’s position and enough information to correct for the offsets in the 

pseudorange data.  The satellite message broadcast in the transmitted GPS signals 

contains the correction parameters for the satellite clock offsets and other time related 

effects.  The GPS relativity compensation can be computed from the eccentric anomaly 

term from the satellite ephemeris or from numerically differentiating the satellite 

ephemeris to get both satellite position and velocity.  The atmospheric delays due to the 

ionosphere and troposphere are discussed in a later section of this thesis.  These 

corrections are applied before computing the GPS point solution.   

5.7 Geometric Dilution of Precision 
The Dilution of Precision (DOP) is an approximate “rule of thumb” and is often 

applied to GPS position accuracy estimates.  It is a byproduct of the navigation algorithm, 

so it is often obtained to indicate the accuracy of the navigation solution.  Its main 

purpose was to choose the satellites that would give the best geometry and provide the 

smallest error in the navigation solution, especially when the early GPS receivers had far 

fewer tracking channels and could only monitor 4 GPS orbiting satellites from all GPS 

satellites in view.   

The derivation of the DOP equation rests upon the Gauss-Markov Theorem, 

which proves that the least squares method has the least variance of the unbiased 

estimators.  That means least squares is the best estimation rule provided these 

assumptions are met: 

 (1) The statistical model is linear, where Yi = BX + ei for i = 1,…,n. 

 (2) The noise ei has a zero expectation.  (i.e., E[ei] = 0) 
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 (3) All error sources have the same constant variance.  (i.e., var(ei) = σ2) 

 (4) The covariance between individual noise parameters is zero as cov(ei, ej) = 0. 

In general, the errors do not have to be normally distributed.  Also, the errors are not 

necessarily independent, but the errors must be uncorrelated, which is a weaker 

condition.  The linear unbiased estimator of Y = c1X1 + c2X2 + . . . +cnXn, does not 

require that the graph of Y be a straight line (i.e., the variables Xi may have internal 

powers > 1 or be periodic, etc.).  The requirement is that the best estimator Y be linear 

relative to some set of X variables so that a matrix representation of Y = CX holds with 

X as a column matrix that satisfies a linear regression.  The reality is that none of these 

four requirements are met in the actual GPS environment.   

First, the range equations contain square roots and quadratics, and these equations 

are linearized by ignoring the higher order terms of the Taylor series.  This means the 

iteration depends upon a good estimate of the initial position and time bias to get a 

solution.  In fact, this thesis documents that the standard GPS iteration converges 

prematurely in many regions in a simulated satellite constellation.  Some exceptional 

regions occur near a simulated satellite location, which implies this situation may well 

happen when pseudolites are placed near airports.  This has hardly been discussed at all 

in the GPS literature.   

Second, the noise in the pseudorange is not zero mean and independent of time.  

In actual stationary GPS surveys, the position moves chronologically around the 

benchmark in curved patterns, usually with the benchmark at the center after many hours 

of GPS data are recorded.  Using the best models and measurements, the individual errors 

are not random about some mean over a short time interval.  GPS positions also exhibit 

step jumps in meters when a satellite is dropped or added to the GPS least squares 

solution.   

Third, pseudoranges do not have the same variance at any instant and even the 

pseudoranges from any particular GPS satellite change over time.  For example, the GPS 

broadcast includes the value of the User Range Accuracy (URA).  This is a statistical 

indicator of the ranging accuracies obtainable with a specific satellite.  The URA is a one-

sigma estimate of the user range errors in the navigation data for the transmitting satellite.  
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It includes all errors for which the Space and Control Segments are responsible, but it 

does not include any errors introduced by the receiver or the atmosphere.  While the URA 

may vary over the given fitted interval, the URA that is reported is the maximum value 

anticipated over the fitted interval (GPS JPO, 2000).  The URA is only one component of 

the contributing variances, which include ionosphere, troposphere, and satellite position.  

The total variance of any GPS satellite’s ranging data, which statistically is the sum of the 

individual source variances, is never the same constant or the same over time.  Moreover, 

the satellite position error is an elongated ellipsoid, where typically the average satellite 

position uncertainty is about 4.5 meters along the orbital path, about 3.2 meters cross 

track or perpendicular to the orbital plane, and 1.2 meters radial between the satellite and 

Earth’s center (Zumberge and Bertiger, 1996).   The real satellite variance is not a three-

dimensional sphere, but it has directional probabilities with different values in each axis.   

Fourth, all GPS satellites exhibit some form of cross correlation.  The Control 

Segment has its Extended Kalman Filter showing the cross correlation terms are not 

statistically insignificant, although the cross covariances are usually smaller than the 

variance values along the diagonal of the covariance matrix.  Even then, some systematic 

unknown effects still exist in GPS.  For example, the unknown systematic error called Y-

axis bias affects all GPS satellites so that each appears to lag 50 meters behind its 

predicted orbit after a week, despite using the most complete equations of motion and 

modeling maintained by the Control Segment. 

Any of these facts would invalidate the rigorous proof of the following derivation 

for the Dilution of Precision (DOP).  It is noted that many in the GPS community still 

consider the DOP equation as truth.  At best, the DOP factor is an estimator in the 

uncertainty of the position in the solution.  However, it is not always reliable, since the 

DOP factor can have a reasonably small value while the iterative algorithm converges 

prematurely to the wrong location.  Another example is that with enough visible satellites 

scattered above the receiver, the position DOP factor can be less than one, meaning the 

GPS solved position is supposedly more accurate than the inherent uncertainty in the 

satellites’ own positions.  This is never possible in surveying.  The whole science of 

adjusted measurements used in surveying is based on rigorous mathematics, and any site 
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survey obtained by triangulation from a grid of previously surveyed benchmarks with 

given position uncertainties has no smaller uncertainty than the grid itself.  Even with 

infinite precision, the new surveyed point is tied to the grid, which has some unknown, 

but definite, displacement from truth, and that would ensure the new point has at least the 

same minimum error in its determined location.  In any case, it will be shown in the 

analysis of the errors inherent in the iterative GPS algorithm that the DOP factors are 

inconsistent or inaccurate in determining the actual error in the solved navigation 

solution. 

5.7.1 Derivation of the Dilution of Precision Equation 
For the sake of argument, assume the relationship between the pseudoranges and 

the receiver’s position is linear.  The form will be 

ΔR = GΔX or ΔX = (GTWG)−1GTWΔR  by applying least squares where the weight 

matrix W is  

  
W = Diag[σ1

2,σ2
2, ...,σn

2 ] with

σ i
2 = σSat Pos

2 + σ iono
2 + σ tropo

2 + σURA
2 + σ low elev

2   for 1 ≤ i ≤ n.

For brevity, let .  Estimate how close the solution is to truth by 

getting  

WGWGGK T1T )( −≡

 [ ] [ ]TT ))((E))((E)(Cov RKRKXXX ΔΔ=ΔΔ=Δ  

With = the covariance matrix of the measurement vector ΔR, E (ΔR)(ΔR)T[ ]= Cov(ΔR)

  T)(Cov)(Cov KRKX Δ=Δ

The receiver only has no knowledge of the cross correlation that may exist between 

pseudoranges from different GPS satellites, so the assumption that the measurements are 

uncorrelated must be employed here.  Furthermore, the receiver only has the transmitted 

information of the URA and can approximate the other variances to estimate the total 

variance for each ranging measurement.  These variances can be set up in the matrix form 

as W, which is an estimate of the Cov(ΔR).  This formulation now obtains  

  T)(Cov KWKX =Δ
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The derivation so far has only assumed the measurements are unbiased linear estimators 

of the position and that the errors in the measurements are zero mean and uncorrelated.  

Intrinsically, the satellite position errors are taken as spherical so that there is invariance 

due to any rotation inherent in the inversion of the basis where the measurement space is 

taken and transformed into the 3 dimensional position space.  At this point, the 

covariance is a general measure of the position error in the solution, since the 

pseudoranges have separate values.  However, if W = σ2I, which implies all 

measurement weights are equal by being a constant times the identity matrix, then the 

covariance matrix reduces easily to (GTG)-1.  Note a rotation matrix is a square unitary 

matrix where UTU = I.  So, the covariance basis can be rotated from the ECEF XYZ 

frame to the local level coordinates of east, north and up by multiplying G with U. 
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The Dilution of Precision (DOP) is based on the above equation.  The geometric 

DOP is GDOP, the position DOP is PDOP, the horizontal DOP is HDOP, the vertical 

DOP is VDOP, and time DOP is TDOP.  The various DOP factors are defined in east, 

north, up and time components as follows: 

 

GDOP = σe
2 + σn

2 + σu
2 + σ t

2

PDOP = σe
2 + σn

2 + σu
2

HDOP = σe
2 + σn

2

VDOP = σu

TDOP = σ t = cσ time

 

If σ2 represents each satellite’s total variance, the DOP equation predicts the solution 

error from an estimated pseudorange error of σ will be: 

  where GDOP is a geometric function of the satellite constellation. GDOP×σ=δ

As emphasized, this is a crude approximation of the actual navigation errors.  For 

example, any errors that are numerically identical in all pseudoranges will become 
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mapped into the clock error, because any common range errors look like clock errors as 

δR = c δt.  When that happens, the PDOP is small while TDOP is artificially higher than 

actual clock performance errors.  The GDOP equation oversimplifies the navigation 

errors and the real effects. 

The GDOP of an overdetermined satellite geometry is always less than GDOP for 

any subset of 4 satellites.  This is because with each additional satellite, the volume of the 

polyhedron defined by vertices located at the satellite positions and the receiver position 

is always larger.  GDOP is inversely proportional to this volume (Spilker, 1996b).  For 

example, under the assumption of equal measurement variances, the optimal 4 satellite 

geometry (3 satellites equally spaced on the local horizon, one satellite at the zenith) has 

a GDOP of 3 .  The optimal 5 satellite geometry (4 satellites equally spaced on the 

horizon and 1 satellite at the zenith) has a GDOP factor of 2 .   

5.7.2 Applying Dilution Equation in Local Coordinates 
The GDOP is the square root of the trace of the covariance matrix ΔX without the 

scalar σ2, which is an invariant quantity independent of the coordinate frame.  To use the 

other quantities, such as HDOP in the local horizontal plane, the unitary matrix U must 

be obtained to transform the covariances into the local east, north and up components 

computed from the GPS XYZ frame.  To set up the rotation in local east, local north and 

local up, the X axis would be rotated -93.62223004 degrees about the north pole (Z axis) 

to be in the local meridian, which is the longitude through Ames.  But to get the axis 

parallel to the local east, the X axis would be rotated +90 degrees further, and the net 

rotation is -3.62223004° for ψ.  The next rotation θ is about the newly placed X axis to 

rotate the Z axis parallel with the local up vector at Ames, which is 90 degrees – geodetic 

latitude of Ames or 47.977775975°.  The resulting rotation matrix, which is unitary, to 

transform distance measurements into local coordinates is: 
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Compute the various DOP values according to the formulas listed in the previous 

section.  The results are summarized in the following table. 

Local Dilution of Precision Values 
GDOP   (enut) 3.22
PDOP    (enu) 2.74
HDOP      (en) 2.39
NDOP        (n) 2.27
EDOP        (e) 0.76
VDOP        (u) 1.35
TDOP         (t) 1.70

Table 1:  Dilution of Precision in East, North, Up Components 

Even though the coverage is limited to the northern half of the local hemisphere, 

the DOP values are reasonable, which indicate that navigation solutions should be stable 

using the standard computational method.  Ideally, the GDOP should be as close as 

possible to 1, and this could only be achieved with additional satellites with some 

additional satellites in the southern portion of the local hemisphere. 

5.8 Earth Rotation Compensation to Pseudoranges 
A race’s completion time is altered when the finish line is moved relative to the 

runners during the race, and, similarly, the pseudorange must be compensated for a 

ground-based receiver due to the rotating Earth.  The longest transmission interval exists 

with the GPS satellite at the local horizon, which is about 25,782,600 meters in distance 

or 86 ms in duration.  The ground-based GPS receiver has the largest rotational velocity 

of 465 m/s at the equator, and the Earth’s rotation displaces that receiver by a distance of 

40.0 m in that pseudorange with the satellite due east or west of the receiver.  The time of 

transmission is just the pseudorange, ρ, divided by the speed of light, c.  The receiver’s 

rotational velocity depends on its latitude on the spinning Earth, or equivalently, Rω×  

with ω being the angular rotation rate in radians per second and R being the receiver’s 

XYZ location.  The velocity multiplied by the transmission interval will obtain the 

correction to the GPS receiver’s pseudorange.  This is in vector notation for either form 

as: 

( ) ( ) ρ==⋅×=⋅× ddtcc/ordtc/ 2 ρRωρRω  
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5.9 Relativity 
Relativity affects the GPS satellite clock, both in the velocity contribution from 

special relativity and in the gravitation difference from general relativity in space versus 

the Earth’s surface.  Without getting into the detailed relativistic derivations, the 

collective effects to first order have been derived (Ashby, 1987) to find that: 
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To receive this nominal frequency f0 at the Earth’s surface, the GPS satellite clock 

is offset from the ideal frequency of 10.23 MHz to 10.22999999543 MHz, so that the 

GPS receiver does not need to make any compensation for these effects.  However, the 

GPS satellite traverses in an elliptical orbit that varies the gravitational potential and the 

velocity.  The GPS receiver compensates for these effects by the following formula (GPS 

JPO, 2000) (Hoffman et al, 1994):   
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where  are the satellite’s position and velocity.V and P
GG



www.manaraa.com

41 

Chapter 6 Atmospheric Effects on GPS Pseudoranges 
GPS still exhibits significant errors.  The largest natural errors come from the 

atmosphere, and this chapter discusses the largest effects that alter the accuracy of the 

pseudoranges.  Although the tropospheric effects at very low elevations are sometimes 

comparable with the ionosphere effects, the ionosphere has far greater variability.   

6.1 Ionospheric Effects on GPS 
The ionosphere is formed basically by ionization from the Sun’s radiation.  The 

ionosphere is a weakly ionized plasma gas, which has different chemical properties at 

different altitudes.  The density of the ions is less than 1% of the neutral gases.  The 

various regions of the ionosphere have different chemical properties with the heavier 

molecules and ions at lower heights and the lighter atomic ions at greater altitudes.  

Electron diffusion becomes important above 180 km above the surface, and the free 

electrons that are generated by solar ultraviolet emissions follow the Earth’s magnetic 

lines of force.  Additional changes in electron density above 180 km are produced by 

electric fields that cause electrons to move in a direction perpendicular to the magnetic 

lines of force.  The scale height of each ionic molecule is H = kT/mg where k is 

Boltzmann’s constant, T is temperature in Kelvin, m is the mass of the molecule and g is 

the gravitational acceleration.  The scale height is inversely proportional to each ion’s 

atomic weight, but free electrons do not fall off very fast with increasing height.   

The ionosphere produces most of the effects on GPS signals by the total number 

of free electrons in the ionosphere.  This integrated number of electrons is called the total 

electron content (TEC), and it is expressed as the number of electrons in a vertical 

column having 1 square meter cross section between the satellite and the receiver.   

Fortunately, the ionosphere is dispersive where the refractive index is a function 

of the operating frequency.  The ionosphere range error can vary from only a few meters 

to many tens of meters during the course of each day.  The two-frequency GPS receivers 

take advantage of this property and correct for the first-order ionospheric range and 

range-rate effects directly.   
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6.1.1 Refractive Index of the Ionosphere 
To categorize the propagation effects of radio waves through the ionosphere, its 

refractive index must be specified.  The refractive index of the ionosphere, n, has been 

derived by Appleton and Hartree (Davies, 1989) and is shown  
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where X = Ne2/εomω2 = (fn/f)2, YL = eBL/mω = (fH cos θ)/f, YT = eBT/mω = (fH sinθ)/f, 

Z=ν/ω, ω = 2πf, where f is the system operating frequency in Hz, and 

e = electron charge, -1.602 x 10-19 coulomb 

 ε = permittivity of free space = 8.854 x 10-12 farad/m 

 m = rest mass of an electron = 9.107 x 10-31 kg 

 θ = the angle of the ray relative to the Earth’s magnetic field 

 fν = the electron-neutral collision frequency ≈ 104 Hz. 

 fH = the electron gyro frequency ≈ 1.5 MHz 

 fn = the plasma frequency is ≤ 20 MHz in virtually all cases. 

 Using the newly defined terms for X, Z and Y = YL
2 + YT

2 , the refractive index 

of the ionosphere at GPS frequencies with all coefficients greater than 10-9 can be derived 

(Brunner and Hajj, 1991) as: 

 n =1 − (X / 2) ± (XY / 2)cosθ − (X2 / 8)  

The last two terms are far less than the first order term, X/2.  For a more typical 

ionospheric maximum plasma frequency of 12 MHz, the higher order terms can be 

ignored to better than 0.1% accuracy.  Limiting the angle of incidence above 70 degrees 

(except near the magnetic pole regions), the error in the dual frequency ionosphere 

compensation is now less than 0.0001 of the ratio between the first and second order 

terms.  Thus, a correction of the first order term of, say, 100 meters will result in a 

compensation error less than 1 centimeter.  The Appleton-Hartree equation reduces to the 

simple dual frequency ionosphere correction for the refractive index as: 

 n = 1 – (X/2) = TEC
f

3.401dlN
f

3.401 22 ∫ −=− . 
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The quantity  is the total electron content (TEC), which is in units of el/mNdl∫
2 of free 

electrons in the volume of the atmosphere integrated along the propagation path between 

the GPS satellite and receiver.  One TEC unit = 1 x 1016 el/m2, which causes 0.853 cycles 

of phase in L1 or 0.163 m range error in L1.  With the current GPS measurement 

precision, the dual frequency ionosphere compensation is quite sufficient for all practical 

GPS applications to less than 1 centimeter. 

6.1.2 Ionospheric Group Delay 
The delay of the ionosphere produces range errors, which can be expressed as 

time delay or, in distance, by multiplying the time delay by the speed of light.  This delay 

can be determined by Δ ,.  At L band, the first-order refractive index is  

n = 1 – X/2 where X and the ionospheric delay is Δ

r = (1 − n)dl∫

= 40.3( N dl∫ ) / f 2 t =
40.3
cf 2 Ndl∫ .   

Let Ii be the ionosphere effect for the ith frequency, either fL1 or fL2, D be the 

corrected propagation distance between the satellite and receiver, and PRi be a measured 

pseudorange of the ith link.  Since the geometric range is the same from any satellite to 

the receiver antenna, the difference of the simultaneous measurements of the total range 

will give the effective value of the TEC.  Pseudoranges have the same time offsets due to 

the receiver’s internal clock and due to other offsets common to both frequencies, such as 

the troposphere.  Thus, the ionosphere’s time delay difference is observed by the 

difference between the measured pseudoranges.  
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Here, L1 frequency is f1, L2 frequency is f2, and the measured time delay difference is δt.  

To put this in terms of corrected PR = PR1 + c δt, which by substitution is: 
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6.1.3 Ionospheric Carrier Phase Shift 
The carrier tracking loop inside the GPS receiver counts how many cycles have 

been generated per unit time.  Since the GPS signal is delayed due to the ionosphere, both 

the code and carrier are delayed, but the carrier tracking loop is still generating cycles to 

compare to the input signal.  The code chip boundary is set by 180 degree changes in the 

carrier phase when transitioning between values of 1 to -1 or -1 to 1.  The carrier phases 

at code boundaries appear as normal phases when the code chip value remains the same 

(-1 to -1, or 1 to 1).  When the delayed signal does arrive, the carrier tracking loop has 

precisely more cycles when it compares the internally generated carrier to the input 

carrier, and the result is an apparent advance in the integrated carrier phase measurement.  

This carrier phase advance due to the ionosphere can be expressed as: 
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The TEC term is replaced with the value obtained from the measured time delays.  This 

obtains the following correction terms: 
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These correction equations applied to the pseudorange are only valid if the pseudorange 

error is insignificant.  But, the general pseudorange error is between 20 and 55 

centimeters for good signal conditions, and the L1 and L2 scaling factors of 1.546 and 
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2.546 make multiple cycles of carrier phases.  Thus, the carrier phases will not be 

corrected for this study using the dual frequency ionosphere method, and only 

pseudoranges will be given the ionosphere correction.  As the novel method is illustrated, 

the ionosphere correction applied to the carrier phases is not needed. 

Other ionospheric effects in the range of the GPS signal spectrum are usually 

insignificant except for the most rigorous applications.  Since the frequency is simply the 

time derivative of phase, the additional Doppler shift due to changing TEC is small and 

around 0.085 Hz at L1, which corresponds to a 1.5 cm/s range rate error.  This effect is 

insignificant for GPS receivers with a typical tracking loop bandwidth of a few Hz.   

The Faraday polarization rotation is overcome in GPS, since the GPS signals are 

transmitted with right-hand circular polarization.  The GPS receiver antenna is designed 

for right-hand circular polarization to ensure that it matches the characteristics of the 

received signal.  The Faraday polarization rotation affects those transmissions that are 

elliptically polarized and the antenna is not configured to receive these signals, but the 

GPS signal is nearly circular with nearly equal power upon incidence with the antenna. 

The ionosphere can refract the GPS signal by an angular deflection that is a 

function of TEC.  The findings of low local elevation only resulted in a 4 arcsecond 

deflection with L1 and 6 arcsecond deflection with L2 at 0 degrees (Millman and 

Reinsmith, 1974).  GPS receivers should not track GPS satellites below 5 degree 

elevations, since multipath (i.e. reflections) and tropospheric effects are greatly increased 

at low elevations.  So, ionospheric refraction is not significant to GPS. 

The ionosphere can produce dispersion of the spread spectrum signals from GPS.  

The pulse dispersion in differential time delay is proportional to TEC and inversely 

proportional to the cube of the frequency (Millmann, 1965).  The effect across the 20 

MHz GPS bandwidth is nearly the usual ionospheric effect /frequency and can be ignored 

for all practical purposes.   

Irregularities in the Earth’s ionosphere demonstrate short-term signal fading.  

These are brief periods, often around the times of maximum 11-year solar cycle period, 

which strong scintillation effects have been observed.  The areas that are hardest hit are 

near equatorial regions and are generally limited to approximately 1 hour after local 
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sunset to local midnight with a maximum loss of about 20 dB in signal to noise ratio 

(Goodman and Aarons, 1990).  Severe phase scintillation can cause a large random 

fluctuation superimposed upon the normal Doppler shift due to the rapid change in TEC.  

GPS receivers may have phase lock problems, especially in a phase lock loop (PLL) if 

the ionosphere produces a phase change faster than the receiver’s bandwidth can allow.  

A change of 1 radian in phase at L1 corresponds to 0.19 TEC units, or only 0.2% of the 

typical ionosphere background, which cause problems to maintain receiver carrier lock 

loop.  To quantify the possible shift, the fluctuation in daytime zenith TEC was recorded 

at Hamilton, MA, during 1981, a year of high solar activity.  The worst deviation of TEC 

was approximately 25 units over a 1 minute interval.  That equates to 21 revolutions in 

phase over 60 seconds (i.e. phase changes of 125 degrees per second).  However, the 

frequency lock loop (FLL) is able to follow multiple rotations of the phase without loss 

of lock, so the basic FLL with a bandwidth of 5 to 8 Hz should be able to handle this 

extreme phase shift.  Those regions of Earth with strong phase scintillation are limited 

normally to near-equatorial latitudes, but during the major magnetic storms of March 

1989, these effects occurred over the mid latitudes as well. 

Most GPS references claim that the ionosphere retards the code by an amount 

below the speed of light in a vacuum while the phase is advanced by the same magnitude 

above the ideal speed of light.  For example, Klobuchar (1996) states, “As a radio signal 

traverses the ionosphere, the phase of the carrier of the radio frequency transmission is 

advanced from its velocity in free space….The relationship between group delay and 

carrier phase is simply Δφ = -f Δt, or, for every cycle of carrier phase advance, there are 

1/f seconds of time delay.”  Lieck (1995) points out, “The phase velocity is larger than 

vacuum speed and the group velocity is smaller than vacuum speed by the same amount 

Δc.”  The GPS receiver removes the initial Doppler shift in the transmitted signal and 

despreads it, there is only one frequency being tracked.  It is the phase angle that gets 

reversed frequently to mark the edges of the code, but the phase velocity remains 

unchanged with demarking code boundaries by phase reversals. 

Assume the GPS transmission is high enough in signal strength so that spreading 

and dispreading of the signal is unnecessary to recover the standard GPS signal that is 
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weaker than thermal background noise.  The code is physically attached to the carrier and 

the code boundaries are demarked by transitions of 180° shifts in the phase.   

Once the GPS signal is transmitted, there is no way to separate the code from the 

phase since it is a single frequency.  The phase observable is the difference between the 

generated phase inside the receiver compared to the received phase traversing through the 

ionosphere.  If the transmitted phase and code are equally delayed through the 

ionosphere, the phase difference is greater since the receiver has generated more phases 

before the received GPS phase signal arrives.  This phase difference is the real advanced 

measurement in the phase tracking loop and is not the result of the incorrect justification 

that the phase velocity is larger than the speed of light in a vacuum.   

The code is not an envelope of superimposed signals.  For example, one code chip 

is like a step function in baseband.  A Fourier summation of frequencies from -∞ to +∞ in 

time is required to equal a single step function of finite width.  This is unrealizable in 

practice, since frequencies have to be present prior to the existence of the step function.  

Also, the signal passes through a low pass filter in the receiver, so all high frequencies are 

effectively cut off.  This also means the group envelope is impossible to construct by 

superpositioning, since all higher frequency components needed to construct the step 

function mathematically are eliminated.   

The phase advance explanation is incorrectly applied to GPS.  Undergraduate 

textbooks on electromagnetic theory document that the phase and group velocities 

through a medium or even in a hollow waveguide satisfy the equation, vg vp = vc vc in a 

medium such as gas (Lorraine and Corson, 1970).  Here, the equation incorporates the 

index of refraction as slightly larger than 1 as the speed of light through the air is less 

than in a vacuum.  Assume the claim that the code is slower than vc by δv for the group 

velocity and the phase is faster than vc by δv.  Directly substitute these expressions into 

the equation to get a contradiction: 

( )( ) 2
c

2
c

2
cccpg vvvvvvvv <δ−=δ+δ−=   

Obviously, the standard explanation is wrong while still getting the right answer 

from the observed phase measurements.  The alternate explanation given here still 
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obtains the right results, but the explanation offered in this thesis does not contradict 

electromagnetic theory. 

6.2 Tropospheric Effects on GPS 
This section deals with the tropospheric effects on the GPS signals and the effects 

on the GPS measurements.  Primarily, the effects discussed include troposphere 

attenuation, scintillation and delay.  It should be noted that about a fourth of these effects 

are actually attributed to the gases in the tropopause and stratosphere.  The troposphere 

produces attenuation mostly below 0.5 dB and delay effects generally between 2 and 25 

meters.  These effects vary with elevation, since a longer path length traverses through 

the troposphere at lower elevation angles.   

6.2.1 Troposphere Components Affecting GPS Signals 
The troposphere consists of dry gases and water vapor, which affect the 

propagation delay of the radio frequency signals quite differently.  As water vapor is 

highly variable throughout the atmosphere, the standard method is to model or measure 

the total amount of water in a vertical column of air with a cross section of one square 

cm.  The total integrated water content can vary widely from the polar region to the 

equator.   

The dry atmosphere is relatively uniform in its content.  The main component that 

attenuates the GPS signals the most is oxygen.  The attenuation is about 0.035 dB for a 

satellite at zenith (Boithias, 1982) (Spilker, 1995).,   However, the effect can be 10 times 

larger in dB at very low elevations.  Assuming a spherical uniform shell of height Hm 

above the Earth, the obliquity or projection factor via the troposphere is a function of the 

elevation angle E for signal strength A in dB (Spilker, 1996a).   
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It should be noted that below 3 degrees, the above equation should not be used since the 

spherical uniform model is not accurate for the troposphere.  In practice, the GPS 

receivers should avoid using satellites below 5 degree elevations.   
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6.2.2 Tropospheric Delay 
The received GPS signal is refracted by the atmosphere, which causes a slightly 

curved path during transmission.  Part of the delay is the actual increase in the path length 

that the signal travels to reach the antenna.  Most of the delay is due to the larger 

refractive index of the atmospheric gases than for free space.  The difference between the 

actual total path delay S = cτ and the geometrical shortest path distance Sg is the excess 

tropospheric delay Δ.  The difference between the actual refractive index and unity is  

n – 1 ≈ 2.7 x 10-4 at sea level and varies with altitude, latitude and weather.  Both the 

group velocity and phase velocity are the same, so the troposphere is nondispersive as 

opposed to the ionosphere. 

As the refractive index varies, the actual signal path has a slight curvature with 

respect to the geometric straight line.  The total length of the actual path from P1 to P2 is: 

 S =
actual

⌠ 
⌡ 
⎮ ds > Sgeometric   and  τ =

n(s)ds
cactual

⌠ 
⌡ ⎮  

However, Fermat’s principle of least action states that the actual path minimizes the time 

elapsed (or time delay as cτ) from P1 to P2 (Sears, 1949).  The actual curved path length S 

is longer than the straight line geometric path in meters where: 

  ds)s(ncanddsSS
geometric

geo
geometric

geometricg ⎮⌡
⌠=τ⎮⌡

⌠≈=

The quantity of primary interest is the quantity of excess delay caused by the troposphere 

as Δ = cτ - Sg.  The error caused by the neglect of path curvature is less than 3 mm for 

elevations above 20 degrees, 2 cm at 10 degree elevation, but 17 cm at 5 degree 

elevation.  The assumption of concentric spherical shells of thickness δri with 

atmospheric density and with constant refractive index ni in each shell obtains the 

spherical form of Snell’s law. 
 runu sinψ u = r1n1 sin ψ1 = n(zenith)Rradial sin ψ(zenith) = constant  

Summarizing, the curved path is physically longer than the straight line, but the curved 

path has a shorter total time delay than the straight line path.  Thus, the troposphere time 

delay is: 
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where the refractivity N ≈ (n-1) x 106 has both dry and wet terms.  The excess delay Δ 

can be expressed as the sum of two contributions from the dry air effects and the wet 

vapor effects.  For practically, troposphere attenuation (typically 0.035 dB at zenith to 

0.38 dB at 5 degree local elevations), rainfall attenuation (about 0.081 dB for 20 degree 

elevation versus 0.259 dB at 5 degree elevation), and troposphere scintillation are 

insignificant (Spilker, 1996a).   

6.2.3 GPS Receiver Troposphere Model 
The present troposphere model used in most GPS receivers is the Central Radio 

Propagation Laboratory (CRPL) Reference Refractivity Atmosphere–1958 (Hotovec, 

1980).  The US government systems specification for GPS is the document SS-US-200, 

which requires that the uncorrelated error attributable to troposphere delay shall have a 

standard deviation error of less than 2 meters.  The correlated or constant error of the 

CRPL 1958 model has been determined as 0.0824 meters from local zenith.  The lowest 

elevation acceptable is E = 5° above the local horizon.  The obliquity equation from 

zenith can be used to determine the worst troposphere error (ET), which then is: 

.meters8414.0
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One standard deviation of uncorrelated error (EU) will be EU = 0.8414 – 0.0824 

= 0.759 meters.  This is the main reason for choosing this model for GPS receivers with 

no wet air terms, since it easily meets the SS-US-200 requirement 

The index of refraction, n, is the ratio of the speed of light in a vacuum, c, to the 

speed of light in the medium, v.  For the atmosphere, v ≈ c, and the difference shows up 
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in the third decimal place.  In practice, another index is chosen, N, that is independent of 

frequency to 30 GHz. 
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This R(h) is the zenith range correction.  At other elevations than 90°, use the 

obliquity equation: 
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for the troposphere correction applied to pseudoranges. 

6.2.4 Other Empirical Troposphere Models 
Several troposphere models incorporate inputs for changing conditions in the wet 

and dry components of the atmosphere.  About 90% of the tropospheric refractions arise 

from the dry and about 10% from the wet component (Janes et al, 1989).  The following 

are brief descriptions of various troposphere models in the literature providing slightly 
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more accurate troposphere models.  The reader can refer to the cited articles for details of 

the models and applications. 

The first is the Hopfield Two Quartic model, which has two quartic polynomial 

fits for the dry and wet components of the troposphere (Hopfield, 1969 and 1970).,  Using 

real data covering the whole Earth, Hopfield empirically found a representation of the dry 

refractivity as a function of the height h above the surface by assuming a single thick 

polytropic layer: 
4

d

dTropo
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Trop
d h

hh
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Due to a lack of an appropriate alternative, the Hopfield model assumes the same 

functional model for the wet components.  The input wet values are based on the relative 

humidity taken by hydrometers at the ground station, usually where the GPS user is 

nearby.  The dry components are modified by the pressure and temperature inputs at the 

station.  Instead of the above empirical function, lengths of the position vectors at sea 

level, RE, the user at R and the satellite, Rd, replace the heights h and hd.  This modified 

Hopfield model is then used to derive a mapping function in the same form as the 

obliquity equation.   

The standard Saastamoinen delay model incorporates the dry pressure using a 

constant lapse rate for the troposphere and an isothermal model above the tropopause 

plus a wet refraction factor dependent on the wet partial pressure that decreases more 

rapidly than the total pressure (Saastamoinen, 1972 and 1973).  The Saastamoinen model 

uses parameters for height corrections in meters and pressure adjustments in millibars for 

the apparent zenith and station heights above sea level in a large lookup table.  An 

extended Saastamoinen model (Bauersima, 1983) refined this model by adding two 

correction terms, one being dependent on the observing site’s height and the other on the 

height and zenith angle.   

The Black and Eisner model began as a correction model from point P1 to point 

P2 at various elevation angles.  Later, it was modified to ray bending through the 

troposphere.  The dry index of refraction is based on the zenith delay from numerical 
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integration of the quartic dry formula in the Hopfield model.  The wet index is an 

exponential decay from saturated surface conditions. 

Berman developed a simple model (Berman, 1976) for water vapor zenith delay 

based on day and night measurements at Edwards AFB, CA.  By estimating the dry 

zenith delay from surface pressure measurements and estimating the surface wet and dry 

refractivity, another estimate of the wet zenith delay is obtained as a ratio of the wet and 

dry surface refractivity where the scale factor is determined from day, night or mixed 

periods of time.   

Mapping functions can accurately relate actual excess path delay as a function of 

elevation angle and atmospheric conditions compared to the zenith excess delay.  These 

are similar to the obliquity equations shown above.  For angles near 90°, the mapping 

function can be reduced to 1/sin E.  At lower elevations, the finite spherical shell width 

and nonuniform density for each shell proves to be inadequate.  Marini (1972) described 

a continued fraction with constants for the first few levels of the infinite continued 

fraction.  Chao (1974) had two separate mapping functions for wet and dry components 

with different constants in place of the constants of the obliquity equation.  Davis (1985) 

had a third level continued fraction for his mapping function that incorporated both dry 

and wet components after computing the coefficients, which were dependent on the 

pressures, height, temperatures, and tropospheric temperature lapse rate.  Other mapping 

functions have been derived often based on the modified Hopfield model, such as 

Yionoulis (1970), Goad and Goodman (1974), Herring (1992), and Black (1978).  Many 

other tropospheric models are similar to those already listed [e.g. Lanyi (1984), Marini 

and Murry (1973), Elgered (1985), Rahnemoon (1988)], but this is by no means 

complete. 

Many comparisons have been made between these numerous troposphere 

correction models.  One paper (Mayer et al, 2000) examined the differences between 6 

models (i.e. Extended Saastamoinen, Standard Saastamoinen, Modified Hopfield, Niell, 

Herring, and Davis).  The conclusion was that the Modified Hopfield, Niell, Herring and 

Davis models had nearly identical precision, while the Standard Saastamoinen was 1.3 

times worse and the Extended Saastamoinen was 1.8 times worse.  The relative residuals 
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after double differencing between two Antarctic locations showed the troposphere models 

still varied between -4 to +4 centimeters using moving averages, although exceptional 

trends that were significant still are left unexplained by any troposphere model.   

6.2.5 GPS Control Segment Troposphere Model 
The GPS Control Segment uses its own model to compute the excess tropospheric 

delay for corrected pseudoranges.  The overall equation for tropospheric delay is: 
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The terms are:  Ps is the monitor station barometric pressure in kilopascals, T is the 

monitor station measured temperature converted to Kelvin, rm is the radial distance from 

the Earth’s center to the meteorological sensors, ra is the radial distance from the Earth’s 

center to the monitor station antenna, rd is the tropospheric dry radius, E is the satellite 

elevation, h is the wet height of the troposphere, e is the estimated partial water vapor 

pressure, and C = 0.85 as the integration constant.  This GPS troposphere delay model is 

for ground stations in the Control Segment to monitor atmosphere conditions in real time 

while simultaneously collecting GPS data in normal operations.
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Chapter 7 Exact Linear Solution Derived for GPS Navigation 
The standard GPS method assumes a minimum of four noncoplanar GPS satellites 

are all that are needed to get a trilateralized solution from distances only.  It actually 

requires five satellites to get a unique three dimensional position and to get the time bias 

between the GPS timescale and the receiver’s clock.  A quick example would prove this 

assertion.  Any three satellites will define a plane.  If three ranges are extended from each 

satellite to a common point representing the receiver’s location, then there are two 

possible pyramids, each sharing a common base in the plane of the three satellites.  One 

pyramid is a mirror image of the other, and the two apexes are the two possible receiver 

locations.  It takes a fourth noncoplanar satellite with a realistic range that terminates at 

only one of the two possible locations to resolve which position is real and which is 

extraneous.  Since there is an unknown time bias still unresolved, it takes a fifth satellite 

to solve for the position and the clock difference.  The reason the iterative method works 

with a minimum of four satellites is that the time bias is assumed to be a fixed value 

(usually zero initially or the last calculated time bias) before the next iteration.   

The following derivation requires a minimum of five satellites to solve for the 

position in XYZ coordinates (ECEF) and the time bias B simultaneously in one 

operation.  Let Ri represent the range between the origin of the ECEF frame and the GPS 

satellite, and let Rr be the distance between the origin and the receiver.  Let Di represent 

the geometric distance between the ith satellite and the receiver.  Let the time bias 

 in meters, c is the speed of light, and dB = c(tGPS − tr ) i represents the pseudorange from 

the ith satellite to the receiver.  Write out the basic pseudorange equation. 

 Pseudorange(i) = (xi − xr )
2 + (yi − yr )

2 + (zi − zr )
2 + c(tGPS − tr )  

In vector format, let   
G
D i =

G
R i −

G
R r  be the range vector from the receiver to the ith satellite.  

The pseudorange equation can be written as:  Di + B = di .  Obviously, Rr
2 = xr

2 + yr
2 + zr

2 . 
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Now, subtract between equations for satellites i = 1, 2, 3, 4 or 5 to get: 
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R2
2 − R1

2 − (d2
2 − d1

2 ) = 2[(x2 − x1 )xr + (y2 − y1)yr + (z2 − z1)zr − (d2 − d1)B]

R3
2 − R1

2 − (d3
2 − d1

2 ) = 2[(x3 − x1)xr + (y3 − y1)yr + (z3 − z1)zr − (d3 − d1 )B]

R4
2 − R1

2 − (d4
2 − d1

2 ) = 2[(x4 − x1)xr + (y4 − y1 )yr + (z4 − z1 )zr − (d4 − d1 )B]

R5
2 − R1

2 − (d5
2 − d1

2 ) = 2[(x5 − x1)xr + (y5 − y1 )yr + (z5 − z1)zr − (d5 − d1)B]

 

Set these 4 difference equations into matrix form and then substitute with matrix 

symbols. 
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ℜ = 2 H X , which is an exact linear matrix equation.  If H is well conditioned and 

rank of 4, then H-1 exists, and the solution for X = H-1ℜ/2 is solved immediately.  If there 

are n satellites visible ≥ 5, then the overdetermined matrix equation is solved using least 

squares.  As long as the H matrix is nontrivial (or ill-conditioned) and of rank 4, the 

matrix product HTH is positive definite and is a symmetric 4 x 4 matrix, which 

guarantees the inverse.  The best estimator using least squares for the unknown vector X 

is: 

 X =
1
2

HTH( )−1
HT ℜ  

Note that the individual components Ri, xi, yi and zi are obtained directly from the 

broadcast GPS message, and the di, are the measured pseudoranges.  With n satellites in 

view, the ℜ is an (n-1) x 1 matrix and H is an (n-1) x 4 matrix, where both are obtained 

by combining both measurements and broadcast values.  X is the solved matrix, which is 

4 x 1. 

7.1 Premature Convergence with Standard GPS Iterative Method 
The standard GPS Iterative Method usually assumes that the nominal position 

begins at the center of the Earth and that the solution will converge after a few iterations 

of the method.  This is often done for GPS receivers when no prior knowledge of an 

approximate position is known for input.  This method has been used consistently for 

over 25 years without any known defects.  However, some field tests using ground GPS 
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transmitters (i.e. pseudolites) showed the GPS receiver converged incorrectly under 

particular configurations.   

7.2 Simulations for Both Methods without Noise in Pseudoranges 
The first phase of this analysis examined what empirical characteristics may cause 

problems with the calculated GPS navigation solutions using the standard GPS method.  

Six GPS satellites were placed at the corners of a cube where the Earth was located in the 

cube’s center.  The distance between the Earth’s center and each satellite was at the ideal 

GPS orbital radius of 26,559,800 meters (GPS JPO, 2000).  The receiver was located 

anywhere near the GPS satellites, and the initial GPS position starting the iterative 

process was at the Earth’s center.  These tests assumed no ranging errors from any 

source, including the atmosphere or clock errors between the GPS satellites and the 

receiver.  Six GPS satellites are located at the vertices of a cube with the edge of the cube 

being 30668615.36 meters (hereafter, one unit) and the six satellites located at (1,1,1), 

(1,1,0), (0,1,1), (1,0,1), (1,0,0) and (0,1,0) as shown in Figure 8:  Setup of 6 GPS 

Satellites in Simulation.  The Earth’s center is located at (0.5, 0.5, 0.5), and the diagonal 

from the Earth’s center to any satellite is 26,559,800 meters.  Simultaneously, the exact 

method ran with the same identical pseudoranges to obtain a navigation solution.  The 

final results from both methods were differenced from the simulated GPS location.   

(1,0,0) 

(0,1,0) 

(1,0,1) 

Earth 

(0,1,1) 

Origin 
X 

(1,1,1) 

(1,1,0) 
Y 

Z 

 

Figure 8:  Setup of 6 GPS Satellites in Simulation 
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Two zones were found along the diagonal between the Earth to the first satellite 

where the standard GPS navigation solution would not converge within 10 iterations.  In 

the centers, these regions converged to navigation solutions that exceeded thousands of 

meters from the actual simulated location.  The first region was between 5 and 1066 

meters away from the satellite at (1,1,1) along the diagonal to the center of the cube with 

some changing limits.  The second region was larger and varied between 231,500 and 

2,673,600 meters away from the satellite at (1,1,1) toward the center of the cube as 

shown.   

 

X 

Stalled Iteration 

“Flat” Region 

Earth 

Y 

True PositionZ 

 
Figure 9:  Diagram of Stalled Iteration in “Flat” Region 

Separate listings of the empirical limits for 10 and 20 iterations for both zones are 

shown in Table 2 and Table 3.  An example of a stalled iteration is listed in Table 4.  

Similar zones were found near the second and fourth satellites at approximately the same 

relative locations where the standard GPS method would iterate suddenly to almost 

imperceptible increments.  The exact method produced a navigation solution within a 

micron of each test position when assuming no noise in the pseudoranges. 
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 10 iterations  
X Y Z 

0.999999 0.999999 0.999996 
0.999994 0.999994 0.999978 
0.999981 0.999985044 0.999943 

0.999980435 0.999980435 0.999941 
0.9999999 0.9999999 0.9999997 

0.999998 0.999998 0.999993 
0.999995 0.999995 0.999982 
0.999992 0.999992 0.99997 
0.999991 0.999991 0.999965 

0.99999 0.99999 0.99997 
0.99999 0.99999 0.99996 

0.999985 0.999985 0.99997 
0.999985 0.999985 0.99996 
0.999985 0.999985 0.999945 

0.9999825 0.9999825 0.99998 
0.9999825 0.9999825 0.99996 
0.9999825 0.9999825 0.999943 
0.9999815 0.9999815 0.99998 
0.9999815 0.9999815 0.99996 
0.9999815 0.9999815 0.999942 

0.999981 0.999981 0.9999413 
0.999981 0.999981 0.99996 

0.9999806 0.9999806 0.99997 
0.9999806 0.9999806 0.99995 
0.9999806 0.9999806 0.999941 

0.99998051 0.99998051 0.999941 
0.99998051 0.99998051 0.99995 

0.999985051 0.999985051 0.99995 
0.999985051 0.999985051 0.99995 
0.999985051 0.999985051 0.999943 
0.999985051 0.999985051 0.999943 
0.999985044 0.999985044 0.99995 
0.999985044 0.999985044 0.999943 

0.999981 0.999985044 0.999943 
0.99998044 0.99998044 0.99996 
0.99998044 0.99998044 0.999941 

0.999980435 0.999980435 0.999941 
   
 20 Iterations  

X Y Z 
0.999999 0.999999 0.99999 
0.999999 0.9999987 0.99999 

0.99999 0.99999 0.99999 
0.999988 0.9999803 0.9999636 
0.999978 0.999978 0.999949 

   

Table 2:  Smaller Region Near (1,1,1) Exhibiting Premature Convergence 
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 10 Iterations  
X Y Z 

0.99 0.9985 0.998 
0.9984 0.99 0.998 
0.9984 0.99 0.9907 

0.99 0.9975 0.9998 
0.96 0.96 0.964245 
0.99 0.9975 0.9998 
0.99 0.998 0.998 
0.92 0.92 0.99 
0.94 0.94 0.98 
0.95 0.95 0.97 
0.96 0.96 0.974245 

0.995 0.99671 0.995 
0.9967197 0.995 0.995 

0.996 0.996 0.995606 
0.997 0.994 0.9925 

   
 20 iterations  

X Y Z 
0.9967196 0.995 0.995 

0.995 0.996719603 0.995 
0.995 0.995 0.997903772 
0.996 0.996 0.9956053 
0.996 0.994 0.9905 
0.997 0.993 0.9925 

Table 3:  Larger Region Near (1,1,1) Exhibiting Premature Convergence 
Receiver at (.995,.995,.995) Initial position at (0.5,0.5,0.5) 

1st Iteration 3390857.7 3390857.7 848913.86 
2nd Iteration 252219.07 252219.074 226761.06 

3rd Iteration 582810.02 582810.022 449278.59 
4th Iteration 586830.34 586830.343 447217.58 
5th Iteration 586502.79 586502.785 445771.14 
6th Iteration 586413.06 586413.061 445395.72 
7th Iteration 586389.80 586389.802 445298.88 
8th Iteration 586383.79 586383.794 445273.89 
9th Iteration 586382.24 586382.244 445267.44 
10th Iteration 586381.84 586381.844 445265.78 
11th Iteration 586381.74 586381.741 445265.35 
12th Iteration 586381.71 586381.714 445265.24 
13th Iteration 586381.71 586381.707 445265.21 
14th Iteration 586381.71 586381.705 445265.20 
15th Iteration 586381.70 586381.705 445265.20 
16th Iteration 586381.70 586381.705 445265.20 
17th Iteration 586381.70 586381.705 445265.20 
18th Iteration 586381.70 586381.705 445265.20 
19th Iteration 586381.70 586381.705 445265.20 
20th Iteration 586381.70 586381.705 445265.20 
Time Bias  (m) 20th = -584382.52  

Table 4:  Example of Premature Convergence 
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The exact GPS linear solution worked as expected, except in the region nearby the 

center of the cube for the center of the Earth or along rays where one component was 

exactly 0.5 units.  These locations prevent the inverse of the HTH matrix, which is ill-

conditioned or has 2 identical rows.  However, a GPS receiver at the center of the Earth 

or having the GPS satellites in precise symmetric positions is not realizable in practice, 

and this does not invalidate the exact method.  These same positions would be invalid for 

the iterative method. 

The result of the simulation was the discovery of regions where the GPS 

navigation iteration converges to positions without getting the receiver’s location.  The 

numerical inverse Jacobian is nearly zero approaching these zones, so that the iteration 

would barely change at the wrong values.  Other stalling regions have been found in this 

simulation, and more are likely elsewhere.  These regions are missed when a different 

starting point is chosen, such as (0.6, 0.7, 0.6), so that the direct line between the start and 

final true location does not penetrate into any region of early convergence.   

Newton’s iterative method to solve a set of linearized equations will correctly 

have both the first and second derivatives at zero when the iteration obtains the actual 

solution or position of the GPS receiver.  However, there is no guarantee in Newton’s 

method that the inverse Jacobian will not be zero from some numerical combination of 

the partials, which does not require the more stringent condition that the numerical first 

and second derivatives are nearly zero.  Obviously, one can test the solution against the 

measured pseudoranges to check whether it converged to the correct position or to an 

unexpected convergence point.  Upon detecting a wrong solution, the iteration can be 

retried with a different starting point to obtain a different converged solution. 

These regions of premature convergence are probably the cause of an incorrect 

GPS solution.  The concern is that pseudolites, which are GPS transmitters placed on the 

ground for improved GPS coverage, may be a detriment rather than an aid for GPS 

navigation, especially if the FAA is going to place pseudolites at airports for improved 

GPS precision approach and landings.  This study found many regions of early 

convergence near the theoretical satellite locations, which may indicate that pseudolites 

aggravate this problem. 
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Research into the regions of early convergence for the standard GPS iterative 

method would be very helpful to the GPS community to avoid these convergence zones, 

but that problem is beyond the scope of this effort.  What has been demonstrated is the 

exact method succeeded in all locations of computing a GPS navigation solution within a 

micron of the true position in the absence of all noise sources.  With the same GPS 

constellation used in the iterative method analysis, no problems other than the ill-

conditioned locations were observed in calculating an exact linear navigation solution at 

any location.  The exact method worked even when the GPS receiver was within the 

boundaries listed in Tables 1 and 2.   

The other facet of the simulation analysis is for GPS receivers in deep space.  One 

of the options being considered is installing a GPS receiver onboard a deep space satellite 

with additional GPS coverage in deep space.  Currently, spaceborne GPS receivers are on 

satellites in low Earth orbits while the GPS satellites are above the spacecraft.  Since the 

GPS satellites broadcast the signals toward Earth, only GPS satellites that are on the 

opposite side of the Earth and near its limb do broadcast signals toward GPS receivers 

that are at higher altitude than the usual GPS orbit.  It was discovered that, at sufficient 

distances away from the Earth (about 2 to 3 times the GPS orbital radius), the GPS 

navigation solution jumped from a high altitude to a low altitude solution.  The standard 

GPS method in this case uses equations that are approximately linear between the 

measured ranges and the receiver’s position.  If the extremely long pseudoranges are 

almost parallel, then the standard method can not correctly distinguish what are the actual 

distances in the pseudoranges and what is a clock bias error.  The long pseudoranges are 

shortened when the clock bias is removed, leaving much shorter ranges that make a lower 

altitude navigation solution.  This is due to ignoring the higher order terms in the series 

expansion of the square root expressions.  This example demonstrates that deep space 

navigation can not use the standard iterative GPS method for a solution, and the exact 

method is more robust and more accurate for such deep space navigation. 

7.3 Simulations for Two Methods with Half-Meter Pseudorange Noise 
The simulations inserted a positive half meter noise into the pseudoranges from 3 

satellites and the other 3 satellites with a negative half-meter noise.  The exact method 
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was significantly farther from the test location than the standard method by 10 to 100 

meters.   

It should be pointed out that the exact formulation is more sensitive to any offsets 

that have not been removed from the measured pseudoranges di than the standard GPS 

iterative method.  An inspection of the ℜ matrix shows that some components are squares 

of the pseudorange, which each is between 3.16 and 4.04 times the Earth’s radius.  Thus, 

the ℜ matrix is susceptible to magnify pseudorange offsets in the navigation solution if 

the offsets are not removed first.  A crude theoretical estimate is the ℜ matrix would be 

affected in each squared d term by 2 d Δd, where Δd is the offset to d in the squared terms 

of the ℜ matrix, and internal differencing can make the Δd terms double, which would 

made the largest offsets be 4 d Δd.  The H matrix would have d + Δd terms, so Ht times 

ℜ should be 8d2 Δd + 8d Δd2, while the HtH should have 2 d Δd terms.   

If the measurement errors can not be reduced or removed, then one optimal 

solution is to use the exact method to get a close, starting position for the iterative method 

to obtain the final converged navigation solution.  A cross-check in ranges can validate 

whether the iterative method encountered an unexpected convergence region in its 

solution.   

7.4 Comparison to Other Navigation Solutions for GPS 
Stephen Bancroft (1985) published the first paper of an exact algebraic and 

noniterative method to solve the GPS navigation problem.  The derivation reduced the 

matrix equation of n satellite equations and conditions to a simple scalar quadratic 

equation, which could be solved by the standard quadratic solution directly.  The 

resulting two scalars would be inserted into the column vector equation to construct the 

two four-dimensional solutions of position and clock bias for the GPS matrix equation.  

To distinguish between the two solutions, substitute back into the equations to determine 

which solution would agree in the matrix equation.  Only one of the two solutions would 

work, and the extraneous solution would be discarded.  The matrix solution relied on the 

least squares formulation, and the method was efficient.  However, it required the extra 

step of back substitution to eliminate the extraneous result, and it was not a linear 
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formulation that could be applied to most Kalman filters that are predominately used in 

smoothing navigational data. 

Lloyd Krause (1987) developed an iterative technique with difference equations 

that were linearized.  In the development, a quadratic equation for the nominal clock bias 

was given, but only the root with the negative square root was used.  No physical reason 

was given why the positive root was discarded.  In reality, the receiver clock bias can be 

either positive or negative with even large absolute magnitudes.  As the technique was 

iterative, it probably relied on the convergence capability by iteration to obtain the correct 

final answer.   

Biton, Koifman and Bar-Itzhack (1996) published an iterative solution that was 

similar to Bancroft’s solution with the difference of computing a different pseudoinverse 

matrix.  The paper claimed a convergence within 2 to 3 iterations, while the standard 

GPS least squares method took 5 to 6 iterations to converge.  These authors showed 

Bancroft’s method was computationally deviated about 5 meters from the standard GPS 

method, while their iterative formulation was within half a meter of the standard GPS 

method.  The analysis did not compare any method to a surveyed benchmark for 

accuracy.  So, the method is probably a bit faster than the standard GPS method, but it is 

not so different to warrant its implementation in GPS receiver designs.
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Chapter 8 Precise Pseudoranges with Dual Phase and Code 
The analysis of the exact method showed sensitivity to measurement errors that 

drove the navigation solution further from truth than the iterative method, especially 

when the pseudorange errors exceeded a meter.  So, this analysis shows a method to 

obtain precise pseudorange measurements with minimal errors by combining standard 

code measurements with the dual carrier phase measurements.  Although it is not possible 

to reconstruct the precise input GPS signal directly after dispreading, the tracking loops 

for the code and carrier do generate the expected input signal characteristics, which are 

used for correlation against the input signals.  As pointed out before, the internal phase 

angle is the arctangent of the quadrature divided by the in-phase signal.  Knowing that the 

GPS signal has the code demarked by 180 degree phase shifts in the carrier phase signals, 

the carrier phase angle of the carrier tracking loop may be any arbitrary angle at the 

moment of the phase discontinuity of 180 degrees.  However, this demarcation is 

consistently repeated at subsequent code boundary occurrences over the short term.  

Subtle changes in the atmosphere and the rotation of the GPS satellite to keep both the 

Sun and Earth in view will rotate the phase angle without doing any physical changes to 

the GPS signal.   

8.1 Enhanced Pseudorange Measurement using Carrier Phases 
The goal of this phase of the research is to provide enhanced pseudorange 

measurements to centimeter precision using dual carrier phase angle measurements.  The 

current way of using carrier phase measurements is through DGPS (usually 

postprocessed) with two GPS receivers, one base station usually stationary at a known 

benchmark and the other a roving remote collecting data simultaneously.  A new method 

documented in this thesis uses only one GPS receiver and performs the final calculations 

in near real time. 

8.2 Derivation of Range Adjustment using Dual Carrier Phases  
The GPS design specifically chose the frequencies of L1 and L2 to be such that 

fL1/fL2 = 77/60 exactly.  Another way of looking at this is by wavelengths, λ, where: 

  meters65.146077 2L1L
+≈λ=λ



www.manaraa.com

66 

Use the pseudorange measurement after removing the clock bias to get a 

reasonably good estimate of the range between the GPS satellite and the receiver.  After 

removing all known range errors, the remaining range error is usually much less than 3 

meters (below a 1/10 of a P(Y) chip), so there is plenty of margin to determine how many 

whole intervals of 14.65 meters are possible between the satellite and the receiver.  

Assume for now that the phase angles of L1 and L2 are Φ′L1 and Φ′L2 precisely after a 

boundary shift of the P(Y) chip.  This phase angle is usually nonzero because the GPS 

satellite slowly rotates once per orbit. 

Calculate K = Truncate[Distance/14.65] with the distance in meters.  Define the 

following terms for the derivation: 

 M is an integer where M = 77K so that DistanceK65.14K77M 1L1L ≤=λ=λ  

 N is an integer where N = 60K so that DistanceK65.14K60N 2L2L ≤=λ=λ  

 B is the time bias in meters = c x time offset between the satellite and receiver 

clocks. 

 m and n are integers such that 0 ≤ m < 77 and 0 ≤ n < 60  

 φL1 and φL2 are part of the phase measurement and less than a revolution. 

It is noted here that the phase measurements are corrected for the phase angle offset 

through the ionosphere before doing this calculation.  The total electron content is 

obtained with dual frequency measurements.  By multiplying with the proper coefficient, 

the proper correction to the measured phase φ′ is obtained.  Any nonzero phase for Φ′ 

will cause all φ′ data to be corresponding larger than expected.  Convert the phase 

measurements by φL1 = φ′L1 - Φ′L1.   

 B)nN(B)mM( 2L2L1L1L +λφ++=+λφ++  

 (M + m)λL1 − (N + n)λL2 = φL2λ L2 − φL1λL1  and divide by λL1 to get 

 M + m −
77
60

N =
77
60

n +
77
60

φL2 − φL1  

 Similarly, 2L1L77
60m

77
60M

77
60nN φ−φ+=−+  

Now the quantity on the left side of the equation is an integer, so the quantity on the right 

is also an integer.  So, try all possible values of n as 0 ≤ n < 60 and find the one value of n 
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that makes the quantity 
77
60

n +
77
60

φL2 − φL1  the closest to an integer.  Use the other 

equation for determining m as a consistency check.  Then, within measurement error, the 

solution is: 

 Distance Di = 14.65 K + (n +φL2)λL2. = 14.65 K + (m +φL1)λL1 in meters. 

The error in the above equation is determined by the error in the phase measurement, 

which should be no worse than 3 degrees in φ or, equivalently, less than 3 mm in 

wavelength.  With each L1 revolution in phase, L2 will advance 60/77 of a revolution.  

Assume the L1 and L2 phases are zero at the code boundary.  Figure 10 shows the 360° 

revolutions of 0 to 76 in L1 through a half chip.  Figure 11 shows where L2 is at each of 

the n revolutions of L1.  For any L2 location at integer L1 revolutions, the neighboring 

L2 locations in Figure 11 are 9 revolutions from the original L2 location and are 360°/77 

= 4.675° apart. 

 

Figure 10:  Phase Diagram of L1 Whole Revolutions Starting at Zero 
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Figure 11:  L2 Phase Diagram Relative to Numbered Whole L1 Revolutions 

If both L1 and L2 phase angles are measured within an uncertainty of 2.3°, then each 

combination of L1 and L2 phase angles is unique within the half chip interval to an 

uncertainty of 3 mm.  However, suppose the phase noise is large enough so that at a 

normal 99% confidence interval designated by a 3σ statistic exceeds ±4 degrees, then two 

phase possibilities may occur.  In that case, the separation of 9 revolutions of L1 means 

there is a distance of 9 x 19 cm = 1.7126 m in wavelength between possibilities.  

Referring to the precise pseudorange measurements from the code tracking loop to an 

accuracy less than 0.85 meters would guarantee the determination of which pair of phase 

angles is the correct one.   

The final check is made that the initial pseudorange distance after corrections ≈ 

Distance Di, since the truncation could cause a round off of one span.  For example, if the 

initial distance was 14.65(k + 0.975) with an actual pseudorange error of 0.05 of a half 

chip (i.e. 0.85 m error), then the truncation would get k intervals instead of k+1 intervals.  

In that case, one final adjustment in the value of K is warranted in the distances. 
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8.3 Experiment Using Pseudorange Adjustment and Phases 
Actual differential GPS (DGPS) receiver tests at known benchmarks are chosen to 

evaluate this theoretical method of adjusting pseudorange measurements with dual phase 

data.  Ashtech GPS survey receivers provided the DGPS data that were made on March 

19, 2002, at 3 locations inside the city limits of Ames, Iowa.  These data are analyzed in 

detail in the next chapter.  These particular receivers do not directly measure the military 

P(Y) code simultaneously on L1 and L2, but they rely on a codeless technique of 

squaring the input P(Y) signal with itself to determine where the pseudoranges are within 

the C/A chip.  P(Y) code chips are 1/10 of the size of the C/A code chip, and navigation 

solutions using P(Y) code should be more precise.  Manual processing of the actual GPS 

measurements were corrected for ionosphere, troposphere, relativity and Earth rotation.  

The navigation solutions were compared using the proposed techniques and the standard 

GPS method against the survey benchmarks identified as IADO, G506 and G001.  IADO 

is the Iowa Department of Transportation building located approximately in the center of 

the Ames, G506 is located in the north of the Iowa State University (ISU) central campus 

lawn, and G001 is about 10 meters north of the Town Engineering Building of ISU.  

G506 is 1.984 km west and slightly north of IADO, and G001 is 672 m northwest of 

G506 on the ISU campus. 

 

IADO 

G001 

G506 

727.7 m 

474.2 m

-2458.1 m

-1887.7 m 

ΔEast 
ΔNorth 

ΔUp 

IADO 

G001 

633.9 m 
384.2 m

G506 

Figure 12:  Three Benchmarks in Ames in Relative Local Coordinates 

 



www.manaraa.com

70 

 
Figure 11:  Arial Map Showing Benchmarks in Ames 

 

 

SV # Azimuth Elevation
2 80.79 23.66
8 -57.31 68.73

11 -48.71 26.36
27 -29.26 74.94
28 -83.38 40.84
31 59.34 49.36

Table 5:  Local Satellite Coverage at Ames 
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Figure 13:  GPS Satellite Constellation during Survey 
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Chapter 9 Analysis of GPS Survey Data 
Data from several Ashtech receivers were compiled over several hours for DGPS 

surveys to determine the precise altitude of various points within Story County in six 

month intervals for about three years.  Data from three Ashtech receivers were obtained 

for this study at the Department of Transportation Headquarters Building (designated 

IADO), a point on the central campus of Iowa State University (designated G506), and a 

point just about ten meters north of Town Engineering Building of Iowa State University 

(designated G001).  Because Town Engineering Building blocks satellites south of G001, 

the maximum number of common satellites was 6 with only 90 seconds of continuous 

data collected at all three sites simultaneously.  This greatly affected the navigation 

solutions to vary significantly from their benchmarks over the short period of data 

recording.  The data are collected every fifteen seconds and are listed in Table 6 with the 

Jet Propulsion Laboratory (JPL) postprocessed GPS satellite ephemeredes spaced at 

fifteen minute intervals, which JPL claims are accurate to three centimeters.  The satellite 

ephemeredes were obtained by Lagrangian interpolation at both the time of reception and 

then iterated backwards to the time of transmission (refer to Appendix).  Pseudorange 

data are listed as C/A L1 and P(Y) L2 from all three locations beginning at 48700 s 

through 48855 s of that day from satellites PRN 2, 8, 11, 27, 28 and 31.  Carrier phase 

data are also listed under the columns labeled as L1 Car. and L2 Car.   

Selected Data for Analysis 19-Mar-02  JPL Ephmeredes (Position) 
G506 L1 Car. C/A L1 L2 Car. P L2 ECEF X ECEF Y ECEF Z Sat Clock 

48780 13 h 33 m 0 s      Epoch  46800 

2 4259791 23663850 3315611 23663860 16804.046 -11050.58 17800.123 -169.50377 

8 -2234620 20263631 -1736808 20263637 -10693.787 -10702.765 21603.509 707.90108 

11 -3805609 23206234 -2959429 23206244 13045.369 -22523.615 -5242.1493 9.826568 

27 845850.9 20342736 652590.5 20342741 -1612.8446 -19031.802 18533.267 14.096344 

28 -3018686 22252898 -2347274 22252903 -20789.105 -12588.224 11107.646 -71.400002 

31 3838096 21294376 2988240 21294382 8593.0273 -16351.979 18685.633 100.42612 

48795 13 h 33 m 15 s      Epoch Sec. 47700 

2 4301629 23671811 3348212 23671823 18619.834 -10651.359 16047.97 -169.5092 

8 -2247903 20261104 -1747159 20261110 -8982.4236 -12537.893 21378.484 707.89771 

11 -3836406 23200374 -2983426 23200383 13610.756 -22659.577 -2520.2196 9.826712 

27 862242.6 20345855 665363.2 20345861 -229.72613 -20483.066 16903.636 14.097469 

28 -3041517 22248554 -2365064 22248559 -19396.004 -12525.722 13453.411 -71.402405 

31 3881357 21302608 3021950 21302614 9565.9748 -14289.186 19879.036 100.42878 

Table 6:  Pseudorange Data from Three GPS Survey Receivers 
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Selected Data for Analysis 19-Mar-02  JPL Ephemerides (Position) 

G506 L1 Car. C/A L1 L2 Car. P L2 ECEF X ECEF Y ECEF Z Sat Clock 

48810 13 h 33 m 30 s      Epoch Sec. 48600 

2 4343503 23679779 3380841 23679793 20249.344 -10345.57 14026.703 -169.51462 
11 -3867126 23194529 -3007364 23194537 13997.252 -22564.775 245.12365 9.827224 

8 -2261065 20258599 -1757415 20258605 -7395.9409 -14422.785 20777.246 707.89433 

27 878770.8 20349001 678242.3 20349007 971.79551 -21839.301 14983.082 14.098595 
28 -3064294 22244219 -2382812 22244225 -17752.693 -12504.743 15571.826 -71.404656 
31 3924736 21310863 3055751 21310869 10684.814 -12171.34 20719.525 100.43093 

48825 13 h 33 m 45 s      Epoch Sec. 49500 
2 4385411 23687755 3413496 23687767 21658.76 -10108.91 11768.31 -169.52004 
8 -2274104 20256118 -1767575 20256124 -5959.0056 -16314.021 19809.968 707.89096 

11 -3897771 23188697 -3031243 23188704 14231.577 -22218.752 3006.2463 9.827736 
27 895435.2 20352171 691227.5 20352178 1991.4491 -23056.7 12803.037 14.09972 
28 -3087018 22239895 -2400520 22239901 -15887.378 -12556.555 17427.053 -71.406907 

31 3968233 21319140 3089645 21319146 11938.905 -10045.798 21192.776 100.43308 
48840 13 h 34 m 0 s      Epoch Sec. 50400 

2 4427351 23695736 3446177 23695748 22819.992 -9912.1286 9309.2865 -169.52904 

8 -2287025 20253659 -1777643 20253665 -4688.5021 -18165.408 18493.44 707.88758 
11 -3928343 23182879 -3055065 23182887 14344.655 -21608.097 5715.6058 9.828247 
27 912232.8 20355368 704316.5 20355375 2836.7205 -24093.48 10399.881 14.116831 

28 -3109693 22235580 -2418188 22235586 -13834.769 -12707.311 18987.605 -71.409158 
31 4011844 21327439 3123627 21327445 13309.866 -7958.0838 21291.201 100.43522 

48855 13 h  34 m 15 s      

2 4469322 23703723 3478881 23703733     
8 -2299827 20251223 -1787619 20251229     

11 -3958841 23177074 -3078830 23177084     
27 929163.3 20358589 717509.1 20358596     
28 -3132318 22231276 -2435818 22231280     

31 4055568 21335760 3157698 21335766     

Selected Data for Analysis 19-Mar-02  JPL Ephemerides (Velocity) 

IADO L1 Car. C/A L1 L2 Car. P L2 
ECEF X 

Vel. 
ECEF Y 

Vel. 
ECEF Z 

Vel.  

48780 13 h 33 m 0 s      Epoch Sec. 46800 

2 930492 23412072 674956.7 23412083 21071.854 5028.9044 -17868.151   

8 -4374265 20014193 -3388455 20014198 19597.703 -19964.331 -391.33646   
11 -5538788 22954497 -4293776 22954507 7360.4451 -2699.2566 29827.63   
27 -1779716 20092244 -1375555 20092251 16353.978 -16488.968 -16389.099   

28 -4988397 22004250 -3858792 22004256 14004.55 797.96589 27183.565   
31 673627 21043379 523720.9 21043386 9982.9452 22437.424 15149.362   

48795 13 h 33 m 15 s      Epoch Sec. 47700 

2 941439.2 23414156 683486.9 23414167 19207.805 3876.8735 -21018.299   
8 -4418446 20005786 -3422882 20005791 18373.844 -20743.702 -4602.9431   

11 -5600465 22942760 -4341836 22942771 5243.3561 -272.62265 30572.685   

27 -1794219 20089484 -1386856 20089491 14366.904 -15679.283 -19776.614   
28 -5042116 21994028 -3900651 21994034 16914.619 525.73918 24871.085   
31 686004.4 21045734 533365.6 21045741 11633.327 23314.212 11332.059   

Table 6:  Pseudorange Data from Three GPS Survey Receivers (Continued) 
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Selected Data for Analysis 19-Mar-02  JPL Ephmeredes (Velocity) 

IADO L1 Car. C/A L1 L2 Car. P L2 ECEF X Vel. ECEF Y Vel.  ECEF Z Vel.  
48810 13 h 33 m  30 s      Epoch Sec  48600 

2 952405.8 23416243 692032.1 23416253 16940.663 2963.611 -23839.45   
8 -4462520 19997399 -3457225 19997404 16835.49 -21062.082 -8739.0314   

11 -5662082 22931035 -4389849 22931045 3395.1488 2417.3787 30791.017   
27 -1808602 20086747 -1398064 20086754 12333.088 -14377.83 -22844.072   
28 -5095798 21983813 -3942481 21983819 19551.012 -117.67561 22138.327   
31 698484.3 21048109 543090.1 21048116 13209.995 23661.014 7318.9013   

48825 13 h 33 m 45 s      Epoch Sec  49500 
2 963386 23418333 700588 23418343 14327.487 2349.8911 -26279.392   
8 -4506493 19989031 -3491490 19989036 15065.04 -20879.524 -12724.896   

11 -5723644 22919320 -4437820 22919330 1869.5983 5296.9679 30479.064   
27 -1822870 20084032 -1409182 20084039 10339.815 -12597.794 -25533.907   
28 -5149448 21973603 -3984286 21973609 21835.936 -1082.3523 19030.535   
31 711060.6 21050503 552889.8 21050509 14624.546 23488.637 3183.7135   

48840 13 h 34 m 0 s      Epoch Sec  50400 
2 974389.9 23420427 709162.4 23420437 11438.028 2084.3779 -28290.388   
8 -4550356 19980684 -3525669 19980690 13152.431 -20174.582 -16488.39   

11 -5785141 22907617 -4485740 22907628 706.02239 8283.8395 29642.421   
27 -1837012 20081341 -1420201 20081348 8471.5958 -10370.897 -27793.895   
28 -5203057 21963402 -4026059 21963408 23703.137 -2304.8346 15599.002   
31 723743.1 21052916 562772.3 21052923 15793.844 22826.88 -997.88452   

48855 13 h 34 m 15 s      
2 985411 23422524 717750.1 23422535     
8 -4594114 19972357 -3559766 19972363     

11 -5846579 22895926 -4533613 22895936     
27 -1851035 20078673 -1431129 20078679     
28 -5256630 21953207 -4067805 21953213     
31 736525 21055348 572732.1 21055355     

Selected Data for Analysis 19-Mar-02   

G001 L1 Car. C/A L1 L2 Car. P L2     
48780 13 h 33 m  0 s      

2 244897.5 23504276 180981.2 23504278     
8 -325696 20103325 -239216 20103324     

11 -521567 23046779 -380417 23046783     
27 13701.84 20182827 6063.299 20182827     
28 -430960 22092373 -313216 22092372     
31 309128.3 21134525 228441 21134526     

48795 13 h 33 m 15 s      
2 272986.5 23509621 202868.7 23509624     
8 -352726 20098181 -260279 20098180     

11 -566118 23038301 -415132 23038305     
27 16346.16 20183331 8123.762 20183330     
28 -467542 22085412 -341722 22085411     
31 338635.3 21140140 251433.4 21140140     

Table 6:  Pseudorange Data from Three GPS Survey Receivers (Continued) 
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Selected Data for Analysis 19-Mar-02  

G001 L1 Car. C/A L1 L2 Car. P L2 
48810 13 h 33 m 30s  

2 301196.3 23514989 224850.3 23514992 

8 -379549 20093077 -281180 20093076 

11 -610508 23029853 -449722 23029857 

27 19212.57 20183876 10357.29 20183876 

28 -503986 22078477 -370119 22078477 

31 368346.1 21145794 274584.7 21145795 

48825 13 h 33 m 45 s  

2 329519.9 23520378 246920.4 23520382 

8 -406171 20088010 -301925 20088011 

11 -654743 23021436 -484191 23021440 

27 22294.18 20184463 12758.51 20184461 

28 -540298 22071567 -398414 22071567 

31 398253.6 21151485 297889.1 21151486 

48840 13 h 34 m 0 s  

2 357952 23525789 269075.2 23525793 

8 -432598 20082982 -322517 20082982 

11 -698828 23013047 -518543 23013051 

27 25586.08 20185089 15323.59 20185088 

28 -576483 22064681 -426611 22064680 

31 428352.1 21157213 321342.5 21157214 

48855 13 h 34 m 15 s  

2 386487.4 23531220 291310.5 23531223 

8 -458833 20077990 -342960 20077990 

11 -742768 23004685 -552781 23004690 

27 29083.03 20185754 18048.44 20185754 

28 -612547 22057818 -454712 22057817 

31 458636.2 21162976 344940.5 21162977 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 6:  Pseudorange Data from Three GPS Survey Receivers (Continued) 

 

The pseudorange residuals between the actual distance taken from surveyed 

benchmarks to the satellites and the corrected pseudoranges were tens of meters off 

except for PRN-31, as shown in the bottom third of Table 7 through Table 9.  The 

residuals demonstrate that corrections must be applied to the measured pseudoranges to 

improve navigation accuracy. 
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Round Res. Time 48780 Time 48795 Time 48810 Time 48825 Time 48840 Time 48855 
PRN   2 -2 -2 -2 -2 -1 -1 
PRN   8 3 3 3 3 3 3 
PRN 11 -1 -1 -1 -1 -1 -1 
PRN 27 1 1 1 1 1 1 
PRN 28 3 3 3 3 3 3 
PRN 31 0 0 0 0 0 0 

Truncate Res. Time 48780 Time 48795 Time 48810 Time 48825 Time 48840 Time 48855 
PRN   2 -1 -1 -1 -1 -1 -1 
PRN   8 2 3 3 3 3 3 
PRN 11 0 0 0 0 0 0 
PRN 27 1 1 1 1 1 1 
PRN 28 3 3 3 3 3 3 
PRN 31 0 0 0 0 0 0 

Residual (m) Time 48780 Time 48795 Time 48810 Time 48825 Time 48840 Time 48855 
PRN   2 -25.55858 -24.71059 -23.44986 -22.16336 -20.94090 -19.78103 
PRN   8 43.84553 44.71796 45.72858 46.72312 47.66823 48.62993 
PRN 11 -10.73449 -10.07085 -9.450774 -8.888415 -8.306192 -7.697212 
PRN 27 15.36069 16.37646 17.68685 18.94695 20.16710 21.36208 
PRN 28 49.35315 49.58462 49.93076 50.23911 50.53947 50.8508 
PRN 31 1.329365 1.559243 2.28351 2.968408 3.644334 4.300024 

Table 7:  Half Chip Adjustments with Ashtech Pseudorange Data at IADO 

 
 
 

Round Res. Time 48780 Time 48795 Time 48810 Time 48825 Time 48840 Time 48855 
PRN   2 -2 -2 -1 -1 -1 -1 
PRN   8 3 3 3 3 3 3 
PRN 11 -1 -1 -1 -1 -1 -1 
PRN 27 1 1 1 1 1 1 
PRN 28 3 3 3 3 3 3 

PRN 31 0 0 0 0 0 0 
Truncate Res. Time 48780 Time 48795 Time 48810 Time 48825 Time 48840 Time 48855 

PRN   2 -1 -1 -1 -1 -1 -1 
PRN   8 2 2 2 3 3 3 
PRN 11 0 0 0 0 0 0 
PRN 27 0 0 1 1 1 1 
PRN 28 3 3 3 3 3 3 
PRN 31 0 0 0 0 0 0 

Residual (m) Time 48780 Time 48795 Time 48810 Time 48825 Time 48840 Time 48855 
PRN   2 -25.43388 -23.28984 -21.27377 -19.99980 -18.09080 -18.11952 
PRN   8 42.61330 43.05491 43.43300 45.0101 47.37709 48.53149 
PRN 11 -12.61064 -13.12165 -13.15850 -13.30548 -10.81611 -9.081680 
PRN 27 12.96033 14.11648 15.42259 16.50468 19.93002 21.15018 
PRN 28 47.61779 47.56238 47.56710 48.18679 49.54814 50.33297 
PRN 31 -0.41863 -0.262763 0.334074 1.00563 3.290256 4.763457 

Table 8:  Half Chip Adjustments with Ashtech Pseudorange Data at G056 
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Round Res. Time 8780 Time 48795 Time 48810 Time 48825 Time 48840 Time 48855 
PRN   2 -2 -2 -2 -2 -1 -1 
PRN   8 3 3 3 3 3 3 
PRN 11 -1 -1 -1 -1 -1 -1 
PRN 27 1 1 1 1 1 1 
PRN 28 3 3 3 3 3 3 
PRN 31 0 0 0 0 0 0 

Truncate Res. Time 48780 Time 48795 Time 48810 Time 48825 Time 48840 Time 48855 
PRN   2 -1 -1 -1 -1 -1 -1 
PRN   8 2 3 3 3 3 3 
PRN 11 0 0 0 0 0 0 
PRN 27 1 1 1 1 1 1 
PRN 28 3 3 3 3 3 3 
PRN 31 0 0 0 0 0 0 

Residual (m) Time 48780 Time 48795 Time 48810 Time 48825 Time 48840 Time 48855 
PRN   2 -24.62451 -23.79381 -22.99682 -22.25389 -19.68274 -18.60185 
PRN   8 43.91640 44.37117 45.00605 45.63302 47.9118 49.39467 
PRN 11 -11.4196 -11.22234 -11.55069 -11.47921 -9.194201 -8.246747 
PRN 27 15.36476 16.15085 16.61266 16.53064 19.43826 20.83736 
PRN 28 49.23460 49.3547 49.57811 49.18919 49.86694 50.34640 
PRN 31 2.076359 1.932424 2.13182 2.191678 4.915539 5.526159 

Table 9:  Half Chip Adjustments with Ashtech Pseudorange Data at G001 

 
The rounding and truncation results are shown in the upper two thirds of Table 7 

through Table 9.  After standard corrections were applied, the next processing step 

modified the pseudoranges by adding integer lengths of the half-chip (14.65 m) by 

rounding or by truncation.  This reduced the overall pseudorange residuals so that the 

solved navigation solutions were closer to the benchmarks.  Both approaches were used 

with all carrier phase angle data in fractional cycles of a revolution.  Since there was no 

means of capturing the actual phase angle at the code boundary, it was assumed to be 

zero for this analysis.  The procedure described in Chapter 9 was used to determine the 

unique location of the L1 and L2 fractional carrier phase pairing within the half chip.  

This solution for each receiver at each time point was compared to the associated 

benchmark to produce the listed XYZ residuals in Table 10 through Table 12.  Under the 

time heading is the total RMS residual broken into XYZ coordinates using the updated 

pseudoranges.   
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IADO Time  48780 Time  48795 Time  48810 Time  48825 Time  48840 Time  48855 
Truncation without phase correction 
RMS of ΔXYZ 27.849 29.304 33.519 38.494 39.389 32.275 
ΔX 6.651 11.113 2.676 -0.459 1.255 -4.989 
ΔY 25.318 25.991 30.39 37.609 24.888 23.698 
ΔZ -9.503 -7.729 -13.886 -8.196 -30.504 -21.335 
Truncation with phase correction 
RMS of ΔXYZ 23.159 22.846 32.787 34.11 34.162 25.35 
ΔX 0.9314 15.832 5.985 2.377 8.184 -0.102 
ΔY 22.42 16.456 30.918 33.972 19.131 20.669 
ΔZ -5.728 -0.684 -9.123 -1.938 -27.094 -14.678 
Rounding without phase correction 
RMS of ΔXYZ 18.873 19.223 20.07 28.905 32.609 28.365 
ΔX 0.166 6.535 -1.867 -4.967 1.076 -5.155 
ΔY 10.372 15.237 19.647 26.876 28.167 26.947 
ΔZ 15.766 9.729 3.646 9.41 -16.395 -7.202 
Rounding with phase correction 
RMS of ΔXYZ 21.647 20.988 21.905 28.108 27.109 23.9254 
ΔX -5.553 11.253 1.441 -2.13 8.005 -0.269 
ΔY 7.475 5.703 20.175 23.239 22.41 23.918 
ΔZ 19.542 16.774 8.409 15.668 -12.985 -0.544 

Table 10:  Phase Corrections Applied to Ashtech Data at IODC 

 
 
 

G506 Time  48780 Time  48795 Time  48810 Time  48825 Time  48840 Time  48855 
Truncation without phase correction 
RMS of ΔXYZ 44.456 24.155 15.885 16.141 8.798 21.878 
ΔX 5.456 9.781 15.463 8.608 5.543 -6.042 
ΔY 31.051 17.123 -3.614 -9.824 -5.454 16.766 
ΔZ -31.343 -13.95 -0.404 9.483 4.116 -12.689 
Truncation with phase correction 
RMS of ΔXYZ 51.283 36.336 18.282 9.482 11.237 21.632 
ΔX 0.594 8.235 14.911 5.973 8.009 -5.968 
ΔY 34.697 28.977 9.693 -6.982 -5.893 16.643 
ΔZ -37.759 -20.318 -4.233 2.343 5.234 -12.464 
Rounding without phase correction 
RMS of ΔXYZ 6.357 28.7291 25.895 25.86 19.123 21.005 
ΔX 0.5166 4.923 13.434 8.417 5.365 -6.207 
ΔY -5.602 -19.542 -4.604 -6.516 -2.175 20.015 
ΔZ 2.959 20.475 21.654 23.568 18.226 1.444 
Rounding with phase correction 
RMS of ΔXYZ 5.887 16.417 23.652 17.799 21.032 20.8836 
ΔX -4.346 3.377 12.881 5.782 7.831 -6.134 
ΔY -1.956 -7.687 8.703 -3.674 -2.614 19.892 
ΔZ -3.456 14.107 17.825 16.428 19.343 1.67 

Table 11:  Phase Corrections Applied to Ashtech Data at G506 
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G001 Time  48780 Time  48795 Time  48810 Time  48825 Time  48840 Time  48855 
Truncation without phase corrections 
RMS of ΔXYZ 31.631 19.243 33.822 48.399 13.499 15.187 
ΔX 2.203 4.303 4.985 5.142 9.897 -7.723 
ΔY 21.934 15.918 33.037 46.536 -1.162 1.541 
ΔZ -22.684 -9.920 -5.254 -12.267 -9.106 -12.986 
Truncation with phase corrections 
RMS of ΔXYZ 16.026 17.794 39.916 25.882 19.387 12.006 
ΔX 7.441 -3.645 1.399 8.503 11.902 -8.909 
ΔY 11.899 4.886 36.725 23.922 13.677 0.269 
ΔZ -7.738 -16.717 -15.577 5.032 -6.8651 -8.045 
Rounding without phase corrections 
RMS of ΔXYZ 8.592 9.142 25.4553 36.203 11.134 9.299 
ΔX -4.28 -0.2747 0.443 0.636 9.719 -7.888 
ΔY 6.986 5.163 22.293 35.802 2.117 4.789 
ΔZ 2.587 7.538 12.278 5.34 5.003 1.147 
Rounding with phase corrections 
RMS of ΔXYZ 17.822 10.129 26.243 26.503 21.85 11.48 
ΔX 0.958 -8.222 -3.142 3.997 11.724 -9.074 
ΔY -3.049 -5.869 25.981 13.188 16.956 3.517 
ΔZ 17.534 0.742 1.956 22.638 7.245 6.089 

Table 12:  Phase Corrections Applied to Ashtech Data at G001 

 
At all 3 sites, the rounding of integer lengths of half chip intervals and adding that 

to the original pseudoranges produced less residuals than with the truncation technique.  

The decision criteria were obtained by summing the total residuals over all six times for 

the two techniques.   

The next processing step now incorporates the carrier phase adjustments as given 

in Chapter 9 produced the additional average deviations given in Table 13.  Phase 

corrections incorporated with the rounded half chip intervals produced lower navigation 

residuals for the IODC and G506 data when differenced with the benchmarks, but the 

opposite is true for G001.  Phase measurements incorporated with truncated half chip 

intervals improved the navigation residuals for IADO and G001, but they made it worse 

for G506.  Incorporating phase measurements improved 2 of the 3 data sites by either 

rounding or truncation.  Thus, the GPS data did not demonstrate a definite improvement 

with the dual carrier phase method outlined in Chapter 9. 

Method IADO  G506  G001  
  With Without With Without With Without 
Round 23.947 24.674 17.611 21.161 19.004 16.637
Truncation 28.735 33.471 24.788 21.885 21.835 26.963

Table 13:  Average Deviations With and Without Phase measurements 
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Differential GPS results are tabulated using either method to analyze the data for 

any further improvement.  The results of G506-IADO and G001-IADO are shown in 

Table 14 and Table 15 as given below.  The rounding to the nearest half chip with phase 

data from the G506-IADO produced the smallest sum of root mean square (RMS) 

residuals between the four comparisons in Table 14.   

 

 

Deviations of DGPS G506 – IADO Results from Benchmarks  
Time 48780 48795 48810 48825 48840 48855 
Rounding + Phase  

ΔX 1.2079 -7.8762 11.4399 7.9121 -0.1740 -5.8655 
ΔY -9.4313 -13.3901 -11.4716 -26.9126 -25.0238 -4.0262 
ΔZ -22.9984 -2.6666 9.4155 0.7598 32.3287 2.2141 

RMS Sum RMS RMS RMS RMS RMS RMS 
135.7818 24.8865 15.7620 18.7382 28.0618 40.8823 7.4510 

 
Rounding Only  

ΔX 0.3503 -1.6118 15.3006 13.3834 4.2889 -1.0521 
ΔY -15.9744 -34.7789 -24.2511 -33.3919 -30.3423 -6.9320 
ΔZ -12.8075 10.7457 18.0081 14.1586 34.6209 8.6464 

RMS Sum RMS RMS RMS RMS RMS RMS 
186.8015 20.4777 36.4368 33.8603 38.6600 46.2348 11.1319 

 
Truncation + Phase  

ΔX -0.3373 -7.5969 8.9264 3.5956 -0.1744 -5.8660 
ΔY 12.2766 12.5211 -21.2244 -40.9535 -25.0237 -4.0261 
ΔZ -32.0308 -19.6336 4.8894 4.2808 32.3281 2.2135 

RMS Sum RMS RMS RMS RMS RMS RMS 
172.0036 34.3045 24.4943 23.5385 41.3333 40.8818 7.4511 

 
Truncation Only  

ΔX -1.1949 -1.3325 12.7871 9.0669 4.2884 -1.0526 
ΔY 5.7336 -8.8678 -34.0039 -47.4328 -30.3422 -6.9318 
ΔZ -21.8398 -6.2212 13.4821 17.6796 34.6203 8.6458 

RMS Sum RMS RMS RMS RMS RMS RMS 
181.0671 22.6115 10.9141 38.7497 51.4261 46.2342 11.1314 

Table 14:  DGPS G506-IADO Results of Carrier Phases Combined with Pseudoranges 
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Deviations of DGPS G001 – IADO Results from Benchmarks  
Time 48780 48795 48810 48825 48840 48855 
Rounding + Phase  

ΔX 6.5120 -19.4754 -4.5844 6.1275 3.7191 -8.8056 
ΔY -10.5241 -11.5716 5.8060 -10.0509 -5.4538 -20.4005 
ΔZ -2.0085 -16.0319 -6.4534 6.9703 20.2300 6.6335 

RMS Sum RMS RMS RMS RMS RMS RMS 
108.2565 12.5378 27.7527 9.8170 13.6804 21.2798 23.1889 

 
Rounding Only  

ΔX -4.4465 -6.8088 2.3100 5.6023 8.6432 -2.7331 
ΔY -3.3863 -10.0737 2.6461 8.9258 -26.0502 -22.1577 
ΔZ -13.1786 -2.1903 8.6327 -4.0696 21.3983 8.3499 

RMS Sum RMS RMS RMS RMS RMS RMS 
105.9246 14.3148 12.3546 9.3200 11.2968 34.8024 23.8360 

 
Truncation + Phase  

ΔX 6.5096 -19.4768 -4.5858 6.1261 3.7185 -8.8062 
ΔY -10.5217 -11.5706 5.8070 -10.0499 -5.4536 -20.4003 
ΔZ -2.0107 -16.0326 -6.4542 6.9696 20.2293 6.6327 

RMS Sum RMS RMS RMS RMS RMS RMS 
108.2537 12.5349 27.7537 9.8187 13.6786 21.2789 23.1887 

 
Truncation Only  

ΔX -4.4488 -6.8103 2.3086 5.6008 8.6425 -2.7337 
ΔY -3.3839 -10.0727 2.6471 8.9268 -26.0500 -22.1575 
ΔZ -13.1808 -2.1910 8.6320 -4.0703 21.3976 8.3491 

RMS Sum RMS RMS RMS RMS RMS RMS 
105.9254 14.3170 12.3547 9.3193 11.2971 34.8016 23.8356 

Table 15:  DGPS G001-IADO Results of Carrier Phases Combined with Pseudoranges 

However, there is very little difference in the summed RMS totals between the 

four methods in the G001-IADO results.  Statistically, G001-IADO results are essentially 

alike, and the smallest RMS totals show virtually no difference between rounding only or 

truncation only of the half chip intervals as well as no real difference between rounding 

with phase data or truncating with phase data.  A careful look shows that the differential 

navigation solutions for the second time (i.e. 48795 s) and for the fifth time (i.e., 48840 s) 

are nearly 20 to 30 meters off from the “true” difference for G001 and IADO, while the 

difference for the other times are around 10 meters from “true” GPS.   

The primary cause for the large variation in the navigation solutions over such a 

short time is there are no satellites in the southern half of the hemisphere of coverage.  

For example, the satellites are generally scattered east and west of the local zenith (See 

Figure 13), which would indicate large ΔY residuals as shown in Table 10 through Table 
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12.  This is also indicated from Table 1, where DOPnorth = 2.26 was the largest component 

compared to DOPeast = 0.76 and DOPup = 1.35.  The secondary cause may well be due to 

some multipath problems that magnified the pseudorange errors, but there are not 

sufficient data and auxiliary resources to analyze multipath.  One symptom of multipath 

is the variation of the navigation solution when the receivers are all stationary, but it is 

beyond the scope of this research to pursue this issue. 

A closer look at the raw pseudoranges also shows that the data are not appropriate 

for single station navigation.  For example, some of the G001 pseudoranges have L2 

shorter than L1, which is untenable given that the free electrons in the ionosphere retard 

the lower frequency more than the higher frequency by the factor of the inverse square of 

the frequency.  The other L1 and L2 pseudorange data pairs at G001 are nearly equal for 

each time measured, so the ionosphere has supposedly no real effect.  However, the other 

stations do show the ionosphere effect contributes between 8 and 16 meters in the delay 

of the measured pseudoranges, which is more realistic for low solar spot activity and GPS 

measurements in daylight.  But, even IADO and G506 ionosphere delays computed at 

time 48780 are not well correlated to elevation as shown in the following table  

Satellite 
PRN 

G506 Ionosphere 
Correction (m) 

IADO Ionosphere 
Correction (m) 

Local 
Azimuth 

Local 
Elevation 

2 -15.300 -16.664 80.79° 23.66° 
8 -9.205 -8.845 -57.31° 68.73° 
11 -15.283 -16.262 -48.71° 26.36° 
27 -9.162 -10.388 -29.26° 74.94° 
28 -8.940 -9.439 -83.38° 40.84° 
31 -9.411 -10.314 59.34° 49.36° 

Table 16:  Station Ionosphere Corrections versus Elevations 
Note that the zenith correction is near -9 meters and the correction near the 

horizon is about -15 to -16 meters.  However, the mid elevation satellites have nearly the 

same ionosphere correction as PRN-27 nearest the zenith.  This is unexpected, as some 

obliquity trend in the ionosphere should be measured in the pseudoranges.  Thus, the data 

from the DGPS survey receivers do not work well for the single station navigation 

process that was expected.  Although one could claim that multipath reflections skewed 

the data, there is no way to verify this with the current equipment and available resources. 
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Chapter 10 Conclusion 
Dual phase measurements incorporated with the pseudorange data have the strong 

potential to obtain subcentimeter precision in pseudoranges.  An in-depth examination of 

the Ashtech data reveals that the Ashtech receivers do not output the type of data 

appropriate for this test.  First, the Ashtech dual receivers are designed for DGPS 

processing, which involve double and triple differencing, not actual navigation from a 

single receiver.  The pseudoranges do not have to be precise, as long as all DGPS 

receivers are consistent, and common errors subtract out in the DGPS processing.  

Second, no measurement was possible to determine the phase angle at the point of the 

code boundary with these receivers.  So, the assumption that the actual phase angles at 

the code boundary were zero is invalid.  Third, there is no assurance that the code and 

carrier tracking loops are operating coherently with each other or that the measurements 

are captured at the same instant with both loops.  The Ashtech internal design is 

proprietary, and that precludes an examination into the software architecture to determine 

what characteristics may exist between pseudorange and carrier phase data recording or 

processing.  Fourth, the method given in Chapter 9 was not conclusive, since it 

demonstrates the final navigation solutions were about equal in error with or without 

carrier phase measurements. 

What has been demonstrated in this dissertation is that the: 

(1) New linear exact GPS navigation algorithm has been derived as an alternative to the 

standard iterative GPS method,  

(2) Standard iterative GPS navigation solution may stall prematurely in many small 

regions, which are dependent on the satellite configuration, without getting to the 

receiver’s actual location,   

(3) New carrier phase method combined with pseudorange data can obtain subcentimeter 

precision in the GPS pseudoranges, and 

(4) As demonstrated in the simulation, the combination of the exact GPS algorithm with 

the near perfect pseudoranges can obtain very accurate navigation solutions, even in 

deep space where the standard GPS navigation method will converge to a near-Earth 

solution, instead.   
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The second item may happen more frequently with the advent of pseudolites 

placed nearby airports for precise GPS approach and landings of aircraft.  The last item 

allows far more precision of a GPS navigation solution that has been unattainable until 

now, but it requires the proper code and carrier phase measurements, especially at the 

code boundary, to provide the extra precision that will obtain the accurate navigation.   

The advantages of combining both carrier and code measurements by this method 

will allow real-time calculations without the required convergence of the standard GPS 

techniques that may take several minutes to settle with similar precision.  Furthermore, 

this exact navigation solution is not affected from previous signal interruptions, such as 

blockage or intermittent lightening strikes, which greatly affects smoothing process such 

as Kalman filtering.  When the GPS pseudorange measurements are precise within a 

centimeter, the new navigation algorithm can be as accurate and undoubtedly quicker 

than the standard GPS iterative techniques.   

There were many lessons learned from this effort.  The GPS data must be 

appropriate for this technique to work, but a redesigned GPS receiver should be able to 

accomplish the necessary measurements with minimal modifications to the software 

architecture.  Also, the simplest designs are often the hardest to verify in practice, 

because the means to operate under the simple conditions had not been conceived yet to 

make the measurements.  However, the confidence to continue with sound theory is what 

made this research worth pursuing. 
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Appendix:  Satellite Position Calculated at Transmission 
Through any two points is a unique line.  Through any three points is a unique 

quadratic and so forth with more planar points.  The interpolating polynomial of degree 

N-1 through N points where y1 = f(x1), y2 = f(x2), …, yN = f(xN) is solved explicitly by 

Lagrange’s interpolation formula by assuming the orbit is effectively coplanar: 
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There are N terms, each having a polynomial of degree N-1 and having to be zero at all 

of the xi except one, which is constructed as yi.  Lagrange’s formula gives no error 

estimate, and has to be recalculated for each x.  A better algorithm for constructing the 

same, unique interpolating polynomial is Neville’s algorithm (Press et al, 1997).   

Let P1 be the value of the zeroth degree polynomial through the first point (x1, y1).  

This means P1 = y1.  Likewise, define the other points P2, P3, …, PN.  Define P12 to be the 

value at x of the unique polynomial of degree one passing through both (x1, y1) and (x2, 

y2). 

Then, define the other values P23, P34, …, P(N-1)N.  Continue doing this for the higher 

order polynomials to P12…N, which is the value of the unique polynomial through all N 

points to obtain the desired answer.  The various P values form a table of ancestors on the 

left leading to a single descendant on the extreme right.  For example, with N = 4, 

  

444

34

234333

123423

123222

12

111

:

:

:

:

Pyx
P

PPyx
PP

PPyx
P

Pyx

=

=

=

=

Neville’s algorithm is a recursive way of constructing the table one column at a 

time from left to right.  It is based on the relationship between ancestors and descendants. 
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The recurrence works because the two ancestors already agree at points xi+1 … xi+m-1. 

Neville’s algorithm was applied to the five GPS ephemeris points for each 

satellite as calculated by JPL on March 19, 2002, between 13:00 to 14:00 hours 

Greenwich Mean Time in 15 minute intervals.  Data were gathered for the six satellites of 

SV-2, 8, 11, 27, 28 and 31.  The satellite positions were interpolated by this method at the 

received GPS time.  This produced the initial information to calculate the pseudoranges.  

One iteration was then needed to obtain the transmission time interval due to the finite 

speed of light, which was subtracted from the reception time to get the time at 

transmission.  Neville’s algorithm was applied again to find the interpolated satellite 

positions at transmission time.   

On the following table, the results to calculate the XYZ and satellite clock bias for 

SV-2 are shown.  The five tiers used to set up the interpolation for Neville’s algorithm 

are given both in symbolic terms and with numeric values.  At the calculated time of 

transmission in seconds since the beginning of the day, the final result of SV-2’s position 

in kilometers and satellite clock bias expressed in meters is: 

(20549.69, -10293.6, 13593.08) and -169.516 meters as given in the table below. 

The 5 ephemeris points are chosen from the JPL ephemerides at 15 minute 

intervals with the center point near the transmission time from SV-2.  Each interpolation 

is run separately for the individual components of XYZ and the satellite clock bias. 

 

Interpolation at Transmission Time of Satellite ID = 
2 
T = 48779.9215576643     
P1  P2  P3  P4  P5  
P12  P23  P34  P45    
P123  P234 P345      
P1234  P2345        
P12345          

Table 17:  Interpolation by Neville’s Algorithm Using SV-2 
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Interpolation for X coordinate at transmission time T 
16804.05 18619.83 20249.34 21658.76 22819.99 
20798.62 20575.1 20531.1 20729.67   
20552.76 20548.71 20550.95     
20549.79 20549.6       
20549.69         

Interpolation for Y coordinate at transmission time T 
-11050.6 -10651.4 -10345.6 -10108.9 -9912.13 
-10172.3 -10284.4 -10298.3 -10266.4   
-10295.6 -10292.7 -10295.1     
-10293.5 -10293.7       
-10293.6         

Interpolation for Z coordinate at transmission time T 
17800.12 16047.97 14026.7 11768.31 9309.286 
13945.54 13622.63 13575.22 13735.74   
13590.35 13594.19 13591.27     
13593.16 13593.02       
13593.08         

Interpolation for Satellite Clock Correction at transmission 
time T 

-169.504 -169.509 -169.515 -169.52 -169.529 
-169.516 -169.516 -169.516 -169.513   
-169.516 -169.516 -169.515     
-169.516 -169.516       
-169.516         

Table 17:  Interpolation by Neville’s Algorithm Using SV-2 (Continued) 
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